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Abstract

We address the problem of geometric and semantic con-
sistent video segmentation for outdoor scenes. With no
assumption on camera movement, we jointly model the
semantic-geometric class of spatio-temporal regions (su-
pervoxels) and geometric scene layout in each frame. Our
main contribution is to propose a stage scene model to effi-
ciently capture the dependency between the semantic and
geometric labels. We build a unified CRF model on su-
pervoxel labels and stage parameters, and design an alter-
nating inference algorithm to minimize the resulting energy
function. We also extend smoothing based on hierarchical
image segmentation to spatio-temporal setting and show it
achieves better performance than a pairwise random field
model. Our method is evaluated on the CamVid dataset and
achieves state-of-the-art per-pixel as well as per-class ac-
curacy in predicting both semantic and geometric labels.

1. Introduction
Scene understanding from monocular image sequences,

e.g., videos taken by a moving camera, is an important prob-
lem in computer vision. Among many challenges in provid-
ing a holistic understanding of the video scenes, one core
task is to infer high-level scene properties of image regions,
such as semantic classes and/or geometric layout, in a con-
sistent manner.

Most existing approaches on video segmentation focus
on exploring temporal consistency in region or pixel la-
beling [27]. More recent work consider jointly modeling
semantic class and depth of scene, and attempt to infer
multiple labels of pixels consistently in spatio-temporal do-
main [24]. However, many of these methods require addi-
tional stereo or depth sensor as input [16], while others as-
sume a static scene and derive the scene structure of sparse
points based on structure from motion [22].

In this work, we aim to address the problem of geometric
and semantic consistent video segmentation from a monoc-
ular camera for dynamic outdoor scenes. Given no assump-

Figure 1: Overview of our approach. A hierarchical su-
pervoxel representation is used for video sequences and we
jointly predict the semantic and geometric labels based on a
simple stage scene model.

tion on camera movement and multiple moving objects in
the scene, the key challenge is to integrate semantic and
geometric information efficiently in a coherent framework.
Inspired by [9], we consider jointly modeling the semantic
class of spatio-temporal regions and a high-level description
of scene geometry for each frame in video.

Specifically, we formulate video segmentation as a
multi-label multi-class prediction problem, in which each
over-segmented spatio-temporal volume, or supervoxel, is
assigned geometric and semantic consistent labels. To ef-
ficiently capture the dependency between the semantic and
geometric labels, we propose a simplified stage-like scene
model [18] as an intermediate representation, which im-
poses additional scene dependent constraints for both se-
mantic and geometric labeling. A typical example is shown
in Figure 1, where a box-shape scene model is used to build
the interaction between semantics and geometry.

We design a conditional random field (CRF) for joint
modeling of the semantic class, geometric label and the
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stage representation. The potential functions of our CRF
encode the constraints on two types of labels based on the
stage parameters. Inference can be solved by an alternating
procedure between the label prediction and stage estima-
tion. To label a video efficiently, we build on a hierarchical
segmentation of a video and fuse the predictions from multi-
levels to achieve both spatial and temporal consistency.

Our method is evaluated on the publicly available
CamVid dataset [3], and compared with several state-of-
the-art approaches. We also demonstrate the effectiveness
of our scene representation for joint labeling both quantita-
tively and with visual results.

The main contributions of our work can be summarized
as follows: (1) We propose a stage representation for jointly
modeling the geometric and semantic label of a video se-
quence. Our results show the new representation is benefi-
cial in predicting semantic and geometric consistent scene
labeling. (2) We directly use supervoxel instead of frame-
based superpixel for labeling and feature extraction, which
achieves a more temporally coherent labeling. (3) We ex-
tend the smoothing method based on multilayer represen-
tation to the video setting and achieve the state-of-the-art
per-class and per-pixel accuracy without any high-level ob-
ject information.

2. Related Work
Holistic scene understanding is a fundamental problem

in computer vision and has attracted much attention re-
cently. Early works mostly focus on either semantic label-
ing [21], or the geometric layout of visual scene [13] of
static images. More recent approaches attempt to jointly in-
fer semantic and geometric property in a consistent way [9],
and also consider multiple aspects of scene [14]. They
found that jointly estimating these types of property can ac-
tually improve performance in predicting all of them.

Our stage model is inspired by [18] and recent work on
indoor scene understanding [12]. However, the goal of [18]
is to predict scene categories, and the work in [12] is fo-
cused on the layout of static indoor scenes. Our method
extends the scene model used in [9] in two ways. First, we
extract both appearance and geometric features rather than
using the same features for prediction of two kinds of la-
bels. More importantly, we propose a box-like stage model
to efficiently capture the dependency between the semantic
and geometric labels.

In video scene understanding, current methods widely
exploit temporal consistency across neighboring frames, or
long-term relationship, to enforce temporal label smooth-
ness. In the following, we discuss two types of video seg-
mentation methods. They avoid the inconsistent and inde-
pendent labeling by incorporating temporal dependencies
and also make better use of motion information in the video.

Unsupervised video segmentation is usually the pre-

processing step for further high-level understanding [10, 5,
17, 1, 25]. Those methods are either built on optical flow
or appearance in the spatio-temporal neighbors. Optical
flow [4] is generally a local search and cannot capture the
long-term relationship. Brox et al. [23] model long-term re-
lationships in a video sequence by generating trackers but
can be very time-consuming for a dense representation. We
refer the reader to [27] for detailed comparison.

To infer high-level scene properties, video inputs usually
provide more information than static images. Several works
have attempted to jointly infer both semantic and 3D scene
structure [16]. However, most of them rely on structure
from motion [11], which assumes single relative motion, or
additional stereo inputs [7]. In our model, we do not make
any assumption about camera or foreground motion. The
method in [22] is based on SfM with full video sequence
as input and get a relatively dense reconstruction and [28]
requires dense depth map as additional input. For [16], it
utilizes the stereo pairs of images for static setting and re-
lies on motion for monocular setting but achieves inferior
results. Recent work also addresses the geometric context
labeling in videos [19]. Tighe et al. [24] explore the se-
mantic and geometric information in video segmentation,
but geometric labeling is treated as another type of external
information. Moreover, they pool over the finest layer of
supervoxels, without integrating the high-level information
provided by the hierarchy.

Other methods in video scene understanding make use
of high-level object information to enforce object-driven la-
bel consistency [15, 26], and achieve state-of-the-art results.
Unlike those works, our model does not require high level
information such as object detections and our features are
designed to fully exploit the video sequence.

As for the model inference part, our alternating inference
shares certain similarity with [9, 16], in which two types of
labeling are inferred with an alternating processes. How-
ever, our work explores two different kinds of scene prop-
erties, one is the stage model space and the other is the joint
label space.

3. Our approach
We first describe a hierarchical supervoxel representa-

tion of a video clip and the features we used for joint la-
bel prediction. We then introduce the stage scene model,
followed by the joint CRF for the semantic and geometric
label prediction.

3.1. Supervoxel trees

Given a video input, we divide the whole sequence into
smaller chunks with duration T . In the following we will fo-
cus on label prediction in each chunk and the temporal label
consistency can be addressed by using overlapping chunks.
For each video chunk, we employ the method proposed



Base features
Semantic and Geometric Output
S1-3. average, max and variance of semantic probability
for each class
G1-3. average, max and variance of geometric probabil-
ity for each class
Appearance
C1-2. mean and variance of CIE Lab value.
T1-2. mean and covariance of 17 dim filterbank response.
H1-2. mean and variance of HoG.
Optical Flow
O1-3. magnitude weighted flow direction histogram,
mean flow and flow differential at 3 scales.
Shape
P1-3. mean and variance of area, ratio of perimeter and
their change across time
Movement
M1. voxel start region position and end position.
M2. histogram for location change across time.

Table 1: Image feature and region statistics computed to
represent supervoxels. See experiment section for details.

in [10] and obtain a hierarchical segmentation. Supervoxels
are defined as spatio-temporally connected regions at the
finest level. See Figure 1 for an example of hierarchical
segment trees in 2D view. We denote those supervoxels as
{vi}Ni=1 and associate two variables lgi and lsi for vi’s geo-
metric and semantic labels, respectively.

We extract a set of image and motion features at each
pixel, including color, texture, HOG, optical flow. We also
apply method proposed in [13] and [8] in each frame to ob-
tain the per-pixel semantic and geometric probability inde-
pendently. Given these pixel-level features, we compute a
feature vector fi for each supervoxel as listed in Table 1.

3.2. Stage scene model

Modeling semantic and geometric label interaction at the
local supervoxel level is limited as it ignores the global
scene structure. To capture the long-range dependency of
two types of labels, we propose an intermediate scene rep-
resentation based on the stage scene model [18], and use this
representation to link the semantic and geometric labels.

In particular, we focus on the urban street scene and de-
sign three types of box-like structure: frontal, turning view
and view after taking a turn, as shown in Figure 2. These
stage scene models cover most of the common scenarios
in urban street videos taken by vehicle-mounted cameras
(forward-looking). They also give us a coarse layout repre-
sentation, which is used to impose global constraints on the
joint prediction of semantic and geometric labeling.

We parameterize the stage scene model with the 2D posi-

Frontal-view box Left-facing box Right-facing box

Figure 2: Top: three different box-like stage scene models.
The last two cases consist of two subcases in terms of facing
direction of box. Bottom: supervoxel features that reflect its
geometric relationship with the box. For segment in region
1, 3 or 5, we compute the hs

h as its normalized height. For
segment in region 2, 4 or 5, distance ws

w is obtained as the
normalized width from road side. Vp is the estimated van-
ishing point.

tion of its 8 vertices and the vertical position of the horizon
line. In a video chunk, we denote the sequence of the model
parameters as S = {s1, · · · , sT }. Given the stage model
parameters, we can extract a set of stage dependent features
for each supervoxel, as illustrated in Figure 2 and Table 2.
They are designed to capture the distribution of the location
for different object categories in real 3D world. We denote
the stage dependent features for supervoxel i as gi(S).

3.3. Joint CRF for consistent labeling

To jointly predict semantic and geometric labels, we
build a CRF model for each video chunk. Our model con-
sists of three potential functions, which are described in de-
tails as follows.

3.3.1 Supervoxel potential

We model the relationship between the stage model and
supervoxel labels based on a classifier taking both base
and stage-dependent features. The corresponding potential
function E(lsi , l

g
i , S) can be written as

E(lsi , l
g
i , S) = − logPc(l

s
i , l

g
i |fi,gi(S)) (1)

where Pc is the probabilistic score of the classifier output,
and fi, gi(S) are video and stage dependent features, re-
spectively. In this work, we use a Random Forest [6] as the
classifier.



Stage dependent features
Location and Motion
L1. mean, variance of distance between horizon and re-
gion across time
L2. mean, variance of the differential of distance between
horizon and region centroid across time
L3. ratio of pixel the above the horizon
L4-6. mean, variance and the differential of distance from
region centroid to bottom, side, top box region
L7. mean, variance and the differential of overlap rate of
region centroid and five regions
L8. majority overlap rate with five regions
L9. normalized box location in image
L10. normalized differential of box location in time

Table 2: Stage dependent supervoxel features in video se-
quence setting.

3.3.2 Temporal smoothness for the stage parameters

Within each video chunk, we enforce pairwise smoothness
for the stage parameters in two neighboring frames. Specif-
ically, the potential function for the stage parameters E(S)
can be written as,

E(S) =

T−1∑
t=1

σ2
s ||st − st+1||2 (2)

where σs is the effective width of smoothing window in
time.

3.3.3 Pairwise potentials for labels

We consider two types of smoothing for the semantic and
geometric labeling. First we adopt the conventional CRF
setting, in which we add a pairwise potential for neighbor-
ing supervoxels’ labels.

We define a spatial and a temporal neighborhood based
on the topology of supervoxels. For the spatial neighbor-
hood Ns, we connect any two vi and vj that are adjacent in
at least 10 frames. For the temporal neighborhood Nt, we
connect vi and vj when vi meets vj’s head or tail. Denote
li = (lsi , l

g
i ), the pairwise term E(li, lj) is defined as

E(li, lj) = β

{
e−α1fc(i,j)−α2fo(i,j), li 6= lj

0, li = lj
(3)

where in fc(i, j) is the normalized color distance between
vi and vj , fo(i, j) is the normalized χ2 distance between
optical flow distributions at vi and vj . The adjacent super-
voxels are more likely to share the same label when they are
similar in photometric features, or have the same trajectory.

Figure 3: Examples of smoothed stage model estimation in
video sequence.

3.3.4 Smoothing with supervoxel tree

We also consider an alternative approach to enforce the
smoothness between supervoxel labels. Based on the hier-
archical segmentation results, we follow the same setting as
in [20]. We extract all features at each level in the hierarchy
and train independent classifiers for multiple layers. After
obtaining the results for spatio-temporal regions in multi-
layer, we map to the finest level and train an additional clas-
sifier based on the concatenated individual classifier output
vectors for each supervoxel. The corresponding potential
has the same form as the supervoxel potential.

3.4. Model inference

To predict the semantic and geometric labels for a video
chunk, we compute the MAP estimate of the CRF model.
Note that our model involves both stage parameters and the
supervoxel labels, which makes the inference a challenging
problem. We take a greedy approach which minimizes the
energy function based on coordinate descent. More specif-
ically, we alternate between two subproblems: in one sub-
problem, we fix the supervoxel labeling and minimize w.r.t
the stage parameters; while in the second subproblem, we
fix the stage parameters and search for optimal supervoxel
labeling.

3.4.1 Model initialization

We initialize the stage model based on the pixel-wise geo-
metric labels. We can obtain the main geometric result with
features in Table 1 and estimate the stage location with re-
spect to it.

First, we generate a set of proposals for the stage param-
eters based on line fitting of the initial geometric labeling
and image. Afterwards, we exhaustively search the proposal
pool for the best stage parameter based on the overlaps be-
tween each proposal and the initial geometric labeling. Af-
ter extracting the stage parameters, we perform a guassian
smoothing based on the CRF model to keep the temporal
consistency of the stage among frames.

Figure 3 shows several examples of our stage prediction,
which are quite smooth and consistent in temporal space.
Moreover, the stage representation can capture the main
structure of street scene.



R
oa

d

B
ui

ld
in

g

Sk
y

Tr
ee

Si
de

w
al

k

C
ar

C
ol

um
n-

Po
le

Fe
nc

e

Pe
de

st
ri

an

B
ic

yl
is

t

Si
gn

-s
ym

bo
l

Pi
xe

l

C
la

ss

Semantic Only 94.4 91.0 90.7 81.0 52.1 71.9 2.0 5.4 35.9 20.8 3.4 81.5 49.9
Static 94.2 68.7 95.5 82.4 62.5 69.0 18.1 23.6 57.2 36.1 52.5 79.9 60.0

Static + Stage 92.5 71.8 94.6 79.3 66.6 70.5 17.6 30.0 56.3 41.2 54.2 80.1 61.3
Voxel 94.4 69.0 95.4 83.3 63.6 69.1 16.2 26.4 65.2 36.9 51.2 80.2 61.0

Voxel + Stage 94.3 67.7 95.6 82.3 63.6 70.7 18.0 29.0 64.1 37.8 55.9 80.0 61.6
Pairwise 93.7 68.9 95.3 82.3 66.5 70.7 17.3 30.3 65.6 37.8 54.7 80.3 62.1

Multilayer 95.1 75.4 95.7 81.3 62.0 70.0 17.9 34.6 61.6 46.0 52.1 81.8 62.8
Tighe [24] 95.9 87.0 96.9 67.1 70.0 62.7 1.7 17.9 14.7 19.4 30.1 83.3 51.2

Sturgess [22] 95.3 84.5 97.5 72.6 77.6 72.7 8.1 45.7 34.2 28.5 34.1 83.8 59.2
Ladicky [15] 93.9 81.5 96.2 76.6 81.5 78.7 14.3 47.6 43.0 33.9 40.2 83.8 62.5

Table 3: Per-class average and Per-pixel semantic result on CamVid dataset. We show the performance of our approach with
different configurations, as well as the-state-of-the-art accuracy. See text for details.
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Tighe [24] – – – 94.2 94.7
Voxel 95.4 98.5 92.9 95.3 95.6

Voxel + Stage 95.2 98.4 93.0 95.3 95.5
Multilayer 95.7 98.5 93.1 95.5 95.8

Table 4: Main geometric class result on CamVid dataset.

3.4.2 Joint label prediction

Given the stage parameters, we infer the supervoxel label-
ing based on graph-cuts [2] if the pairwise CRF is used. In
the setting of smoothing with supervoxel tree, we can pre-
dict the semantic and geometric labels of the supervoxels
directly.

It is more challenging to refine the stage parameter given
supervoxel labeling, due to the large state space of S. We
take an approximate approach similar to the model initial-
ization and update the stage parameters. We take a candi-
date of stage parameters as long as it reduces the overall
energy function.

4. Experiment
4.1. Dataset and experiment setup

We evaluate our video segmentation on the standard
CamVid dataset, which consists of daytime and dusk videos
of street scenes. We also follow the training/test split of [3],
with two daytime and one dusk for training and one day-
time and one dusk for testing. In our experiment, we use a
chunk that consists of 60 frames and apply the segmentation

in each chunk.
Ground truth label are provided with 11 class: Sky,

Building, Tree, SideWalk, Car, ColumnPole, Fence,
Pedestrian, Bicylist and Signsymbol. Although we
evaluate the accuracy of output in labelled testing frames,
we can obtain dense labels for all frames in the test video.

The original CamVid dataset provides only semantic
classes. To obtain the ground truth geometric label, we ap-
ply a simple mapping from 11 semantic class to 5 geometric
class. Note that our model is not restricted to this setting and
more complicated geometric label space designing is also
feasible. The geometric class in based on [13]. We have
three main classes, Sky, Horizontal and V ertical. For
vertical class, we have three subclasses as Planar, Porous
and Solid.

4.2. Experimental results

We summarize our results on the CamVid dataset in Ta-
ble 3 for the semantic segmentation and in Table 4 for the
geometric segmentation. For semantic segmentation, we re-
port four groups of results based on different configurations
of our approach. The ‘Semantic Only’ is the pixel-wise se-
mantic labeling results based on the Darwin system [8]. The
‘Static’ is the joint prediction of geometric and semantic la-
beling with key frame feature [9], while ‘Static+Stage’ adds
the stage model features to predict two types of labels. The
’Voxel’ and ‘Voxel+Stage’ are based on supervoxel repre-
sentation instead of static image features. Finally, ‘Pair-
wise’ and ‘Multilayer’ are two versions of our full model, in
which the former models spatio-temporal smoothing with
pairwise terms and the latter is based on supervoxel trees.
For geometric segmentation, Table 4 shows the results from
three settings of our methods.

From these results, we can see that the joint supervoxel



Stage model Voxel Voxel+Stage Multilayer

Figure 4: Examples of final prediction results from different settings. First column: input image frame with estimated
stage models; Second column: joint labeling with supervoxel only; Third column: joint labeling with supervoxel plus stage
features; Fourth column: full model prediction with multilayer smoothing.

labeling with the stage model achieves better performance
than the baseline pixel semantic prediction. Our joint video
segmentation achieves higher per-class accuracy and com-
parable per-pixel accuracy w.r.t the state-of-the-art methods.
Note that we do not use pre-trained object models [15], nor
3D information from SfM [22]. In Table 4, we can see that
our performance on geometric labeling is also superior to
the state-of-the-art.

Figure 4 shows some examples of our results, which are
5 consecutive frames in a sequence. The first column is
the input frames overlaid with the estimated stage mod-
els. The second and third columns are from the ‘Voxel’ and
‘Voxel+Stage’ settings. The final column is the output from
our full model with supervoxel tree smoothing. The visual
results demonstrate that the prediction quality becomes bet-
ter after adding more model components.

4.3. Experimental analysis

We now provide detailed analysis on the main compo-
nents in our method. We consider three sets of experiments
in which only partial of our model is used to generate the
joint label prediction. These experiments corresponds to
three rows in Table 3 (from 2nd to 4th). In the following
subsections, we will look deeper into these results.

4.3.1 Static scene with stage model

From Table 3, we can clearly see that the stage model im-
prove the labeling results at key frames. In particular, the
Fence and Bicyclist classes achieve significant improve-
ment. We also show some qualitative results in Figure 5.
We have two observations: firstly, our stage estimation is
not perfect but accurate enough to be a good intermediate



Stage model Ground Truth Static Static+Stage

Figure 5: Examples of semantic labeling with static image
features and additional stage model features.

Stage model Voxel Voxel+Stage

Figure 6: Examples of semantic results with supervoxel fea-
tures and additional stage model features. The stage model
improves semantic labeling in these video sequences.

scene representation; secondly, we can see the segmentation
of Sidewalk, Car and Building in those images are much
better. For example, the first row shows that introducing
stage can not only smooth the SideWalk but also provide
stronger information for Building. The main reason that
the stage model is beneficial for joint label prediction is that
it provide us with more geometric information such as the
height of certain object in real world, the relative distance
to the road side and the distribution of each category in each
region.

4.3.2 Video scene with stage models

In the video setting, we can see that the stage model only
slightly improves the semantic label results but has little ef-
fect on the geometric labels. One possible reason is due to
the noisy estimation of stage parameters in videos. Also,

Stage model Voxel+Stage Pairwise Multilayer

Figure 7: Examples of semantic labeling results from
pairwise CRF based smoothing and multilayer supervoxel
based smoothing.

the relationship between the stage and supervoxels is more
challenging to capture based on simple position statistics.

Some examples of semantic labeling results are shown
in Figure 6, in which we can observe the positive impact
of the stage model. For example, the second and third
row show that the additional information help improve the
Bicylist case: in the dusk, while the appearance based cue
is weak, the stage information provides geometric informa-
tion to boost the score of the correct classes.

4.3.3 Multilayer integration

Notice that the pairwise CRF only slightly improves the se-
mantic labeling performance in our setting. This is likely
due to the strong unary prediction based on supervoxel fea-
tures, the irregular shape of supervoxels and the complex
graph structure in the final pairwise CRF.

The multilayer based smoothing, on the other hand, pro-
vides better performance for both semantic and geometric
labeling. The supervoxels at coarse layers can be viewed as
a higher-order smoothness term, and as we extract features
in each layer independently, the coarser layer can capture
more information than the lower ones. It may also lead to a
more stable statistical dependency between the supervoxel
location with respective to stage and its label.

We compare some example results of semantic label-
ing in Figure 7, which are generated by the single layer
model, pairwise CRF and multilayer integration. We can
see that, for instance in the second and third row, both the
pairwise CRF and multilayer model help improve the class
Bicylist; but the multilayer model gives a better perfor-
mance. The fourth row shows oversmoothing of pairwise
CRF onColumnPole, and correct prediction from the mul-
tilayer model.



5. Conclusion and Discussion

This paper has presented a novel method to combine geo-
metric and semantic information in understanding dynamic
urban street scene. We introduce a stage model as an in-
termediate representation of the geometric information and
efficiently combine two types information. We also show
that by applying the hierarchical structure, we can get a bet-
ter smoothing result. Compared to state-of-the-art methods,
we achieve higher average class accuracy and comparable
pixel level accuracy.

Our current stage model fits street scenes from a driv-
ing perspective; however, it is still quite rigid in the general
case. This can be improved by introducing more subcat-
egories of stage models to represent a scene. Moreover, a
deeper integration of the supervoxel hierarchy and the label-
ing might also improve the prediction performance. For fu-
ture work, we intend to explore more geometric information
in video and a more efficient way to combine the semantic
and geometric information.
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