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Abstract

We address the problem of detailed sequence labeling of
complex activities in videos, which aims to assign an ac-
tion label to every frame. Previous work typically focus
on predicting action class labels for each frame in a se-
quence without reasoning action instances. However, such
category-level labeling is inefficient in encoding the global
constraints at the action instance level and tends to produce
inconsistent results.

In this work we consider a fusion approach that exploits
the synergy between action detection and sequence label-
ing for complex activities. To this end, we propose an
instance-aware sequence labeling method that utilizes the
cues from action instance detection. In particular, we de-
sign an LSTM-based fusion network that integrates frame-
wise action labeling and action instance prediction to pro-
duce a final consistent labeling. To evaluate our method, we
create a large-scale RGBD video dataset on gym activities
for sequence labeling and action detection called GADD.
The experimental results on GADD dataset show that our
method outperforms all the state-of-the-art methods consis-
tently in terms of labeling accuracy.

1. Introduction
Understanding complex activities from videos is a fun-

damental problem in computer vision and has a wide range
of applications in surveillance, human-computer interac-
tion and personal robotics [9]. Much progress has been
made in the key tasks involved in activity analysis, includ-
ing action classification [34, 12, 1, 29, 32, 4, 39], detec-
tion [22, 41, 28, 44], sequence labeling [40, 30, 18, 27, 16]
and activity prediction [13, 14], etc. In addition, recent
advances in depth sensors (e.g., Kinect) enable us to effi-
ciently obtaining dense 3D measurements of dynamic envi-
ronments, especially for the indoor setting. Exploiting such
multi-modal videos for activity understanding has attracted
much attention as they provide rich information about the
object poses and shapes, and are less sensitive to object ap-
pearance and lighting condition [36, 23, 20, 25, 17].

Figure 1. Dense sequence labeling & Detection. Each frame has
an action class label, a set of consecutive frames forms an action
instance. Note that several action instances can repeat right after
each other.

Despite the progress in video-based action recognition,
it remains a challenging task to fully parse complex activi-
ties that consists of a sequence of different actions in long
video sequences. A key step towards understanding such
activities is to produce a detailed frame-wise action label-
ing, which receives much less attention than other tasks in
activity understanding (e.g., action classification or detec-
tion). Previous work typically focus on predicting action
class labels for each frame without explicitly reasoning ac-
tion instances in the sequence [40, 17, 16, 44, 27]. Nev-
ertheless, such category-level frame-wise labeling strategy
is limited in encoding more global constraints at the action
instance level, which tends to produce inconsistent frame-
level labeling for the entire sequence.

In this work, we propose to incorporate action instance
information into detailed action labeling of complex activ-
ities in long videos by fusing the frame-level and instance-
level action predictions. Here sequence labeling is per-
formed in an online fashion, with prediction being made
based on local observations and sequence history, while de-
tection seeks action instances based on the spatio-temporal
patterns of the full actions. As they capture complementary
information at both action and frame level, our approach ex-
ploits the synergy between these two subtasks, and can thus
handle arbitrary long videos with consistent performance in
parsing multiple action instances. We also note that action
classification techniques are not suitable for labeling tasks
because in labeling, the total video length and the action
duration are unknown.

We design a deep neural network pipeline using both



RNN and CNN to perform frame-level action labeling for
complex videos with multi-class action instances. Our net-
work consists of two interdependent modules for detection
and labeling respectively. The action labeling module is
a recurrent network based on the long short-term memory
(LSTMs) [4], while the detection is performed by a stack-
frame CNN [12], which takes a set of sampled frames and
predicts action scores for every generated action proposal.
To achieve consistent labeling, we integrate the predictions
from the action detection module with an LSTM network
for a refined sequence labeling results. Both the networks
are built on a short-term video representation using dynamic
images [1, 5].

To evaluate our method, we build a new large scale
RGBD video dataset of gym exercise activities. It is specif-
ically designed for sequence labeling and action detection
with dense frame level labels. Unlike existing RGBD ac-
tion recognition or detection datasets, our videos include
more complex activities, typically defined by a continuous
sequence of actions. For each activity, we simultaneously
collect depth videos from four different viewpoints so that
our evaluation consists of video data from multiple views.
We refer to this dataset as Gym Activity RGBD Dataset
(GADD). We extensively test our approach on the GADD
dataset and compare with several baseline methods. Our
network outperforms all the baseline methods and improves
the performances of both subtasks.

Our main contributions are two-fold: First, we present
a new dataset for activity recognition, detection and dense
frame labeling in complex videos; Second, we develop a
novel fusion method that integrates the subtasks of action
instance detection and frame-level action labeling, which
results in better overall performance for both tasks.

2. Related Work
Action Detection and Labeling Most action detection
approaches aim to localize instances of a specific action
class based on classifying generated action proposals. For
example, [19] combines dense trajectories and frame level
CNN features to detect actions from sliding window pro-
posals. Such strategies have been improved by effective
methods of generating high quality action proposals as
in [43]. To capture temporal dynamics, LSTM networks
have been widely used in representing action instances.
Singh and Shao [30] propose an LSTM on top of a multi-
stream CNN to model the dynamics for each proposal. Ye-
ung et al. [41] use LSTM and reinforcement learning tech-
nique to progressively observe the video and refine its pre-
diction on where to look next and when to make a decision.
Other methods use structured representations to model the
details of action instances. Yuan et al. [44] improves de-
tection accuracy by explicitly finding the start, middle and
end key frames of an action. Actions are commonly ac-

companied by objects, [22] build on this idea and propose
detecting interactional objects and body parts using an ob-
ject parsing network. They then extract motion features like
HOF and trajectories on the parsed segments. RGB-D in-
formation has also been used in action detection literature
[20, 25]. [20] extracts 3D spatial-temporal context of the
actions using both gray scale and depth images. Shahroudy
et al. [25] extract human body part from depth data and pro-
pose a part-aware LSTM network for recognition and detec-
tion. However, it is challenging for those methods to pro-
duce a consistent parsing of long videos with consecutive
actions from multiple classes.

A more detailed approach to understanding complex ac-
tivities in videos is through sequence labeling. One key
challenge here is to achieve temporal consistency in the
labeling. To better model temporal dynamics, Yeung et
al. [40] propose an attention based MultiLSTM model with
multi-label loss that intelligently select input frames and
produce multiple outputs for a range of frames. [27, 16]
utilize temporal convolution features and deconvolution op-
erations to extract high level temporal dynamics for end-to-
end sequence labeling. Lillo et al. [17] decompose a com-
plex action into atomic actions and propose a pose based
method to detect atomic actions. Ma et al. [18] designed a
novel ranking loss to enforce the monotonicity of prediction
scores, which encodes the activity progression constraint.
By contrast, we integrate the detection with sequence la-
beling to achieve more consistent results. In addition, our
work focus on learning action labeling from densely labeled
videos, while some recent work [10, 24] take unsupervised
or weakly supervised approaches.

Action Labeling Datasets Most commonly used large-
scale action datasets are designed for understanding only
RGB videos [31, 15, 12, 2]. Although these datasets are
large and contain lots of variations, typical videos in these
datasets contain only one action. Such datasets are designed
for action recognition tasks, rather than detection and label-
ing tasks. Our new GADD dataset, by contrast, consists of
multi-view RGB-D videos, and each video contains at least
12 action instances, making it ideal for action detection and
sequence labeling.

The early RGB-D datasets from Microsoft [42, 36, 37]
have relatively low resolution and consist of simple ac-
tions. Recent RGB-D datasets include more complicated
and challenging movements, such as CAD-120[13], Office
Activity [38] and RGBD-HuDaAct [21]. Very recently, a
new dataset aimed for data-driven algorithms called NTU
RGB+D [25] is introduced. It is by far the largest dataset
with 56880 RGBD sequences containing over 4 million
frames. However, they are mostly for the recognition task
and include only one or a few simple actions per video.
KSCGR dataset [26] is a cooking RGBD dataset contain-
ing a sequence of actions. However, the dataset is relatively



small and focuses on specific actions involving only two
arms. Most similar to our RGB-D dataset is PKU-MMD
[3], which is a large scale multi-view dataset that contains
about 20 action instances in each video. However the ac-
tions are relatively simple and posed, making the dataset
less realistic and challenging. Therefore, we build our own
RGB-D dataset for evaluating action detection and label-
ing in this work, which includes realistic and complex gym
exercise and workout activities. A detailed comparison be-
tween different datasets are presented in Sec.4.

Action Recognition and Video Representation Re-
cently, deep network based representations have been
widely adopted in activity analysis of RGB videos[9]. Both
[12] and [29] use stacked frames as input and relies on the
CNN network itself to extract temporal information. Many
others resorts to the LSTM network to learn an action repre-
sentation [45, 4]. [33] modifies the LSTM internal gates and
propose Derivative of States (DoS) to get a video represen-
tation that emphasizes the motion salience. In terms of rep-
resenting temporal dynamics, it is natural to extend the pow-
erful 2D CNN into 3D domain, by extending the input and
every convolutional kernel to 3D. Following this idea, [11]
and [32] propose 3D convolutional neural network. Another
series of work [5, 6, 1] aims to summarize the complex tem-
poral dynamics into one compact image, which can be used
by 2D CNNs for recognition. [35] extends this idea to opti-
cal flow images, further improves recognition accuracy.

3. Instance Aware Action Labeling
We now address the problem of labeling in the complex

videos that comprises a sequence of action instances from
multiple action classes. We aim to integrate global infor-
mation from action detection to achieve consistent label-
ing for parsing complex activities. To this end, we design
an instance-aware action labeling system which consists of
three components: 1) a frame-wise labeling LSTM, 2) an
action detection system to acquire global information at in-
stance level, and 3) a fusion network that integrate both lo-
cal and global information for consistent sequence labeling.
In this section, we first introduce the frame representation
employed in our method, and then we describe each model
component in detail.

3.1. Frame Representation

We adopt a local frame representation that encodes the
short-term temporal dynamics for the frame-level labeling
and detection tasks. Specifically, we first computes a dy-
namic image feature and a single-frame feature, and then
fuse them by concatenating their CNN representations.

Dynamic Images We represent the short-term spatio-
temporal patterns by exploring the concept of dynamic im-
ages [1] based on rank pooling [6]. The original dynamic

Figure 2. Representation for frame ft. We use a window of n
frames centered at the ft to compute dynamic image. The dynamic
image summarize the short term motion cue around ft.

image (DI) aims to summarize the temporal evolution of a
video with a single image representation.

In this work, we use an efficient approximation proposed
by [1], which designs a fast rank pooling strategy. Con-
cretely, the fast DI is computed as follows,

d =

T∑
t=1

[2(T − t+ 1)− (T + 1)(HT −Ht−1)]xt (1)

where the coefficient Ht =
∑t
τ=1

1
τ . This fast approxima-

tion is essentially a weighted sum of the input frames. As in
[1], we compute the dynamic images directly on the frame
pixels, and the resulting d is a array of the same shape as
the input frames features.

Figure 2 illustrates how we implement the dynamic im-
ages to get a frame representation. The DIs is applied to
encode the local temporal windows centered at the video
frames of interest. Our preliminary empirical study shows
the DI is more effective to capture the short-term dynamics
than being applied to long sequences. We therefore choose
to use n = 7 frames centered at the frame ft to construct
the dynamic images at frame ft. This way a dynamic image
summarizes the local motions over a quarter of a second.

Single-frame Features We use slightly different single-
frame features depending on the input is RGB or depth
videos. For RGB videos, the single-frame feature is the raw
RGB image. For depth videos, we also compute 3D surface
normal map in addition to the raw depth frame. The normal
vectors is able to better describe the surface shape [23]. For-
mally, the normal vector N at a point (x0, y0) on a surface
z = f(x, y) is given by

N = [
∂f

∂x
,
∂f

∂y
,−1]T (2)

We first apply median filter to the depth images, removing
most of the noisy edges and filling in holes in the raw depth.
Then we calculate numerical gradient by calculating finite
difference on every point both horizontally and vertically,



Figure 3. Overview of Sequence Labeling. We stack two layers of
LSTM on top of the CNN feature to encode long-term temporal
information.

obtaining a two-channel matrix corresponding to ∂f
∂x and ∂f

∂y
respectively. We use the two channel matrix as the gradient
normal map.

CNN-based Feature Fusion Given the dynamic image
and single-frame features, we now develop a feature rep-
resentation adopting a late fusion strategy that uses a two-
stream CNN [29]. Instead of relying on optical flow which
is noisy and expensive to compute, we use a stream of CNN
to extract fc7 feature from the DI, which is more effective
for capturing the short-term dynamics. A second stream
of CNN computes the fc7 features from the single-frame
feature, and we concatenate these two features together to
represent the frame. Figure 2 gives a overview of the frame
representation. It should be noted that to represent a video
segment, we simply stack such frame representations as the
input to CNN, as depicted in Figure 4

3.2. Frame-wise Action Labeling

To predict frame-wise action labels, we build an LSTM-
based recurrent neural network on top of our frame repre-
sentation. The RNN allows us to encode the long-term dy-
namics of the activities so that our prediction exploits both
current and history observations.

Specifically, at each given time step, we first compute the
local frame representation described in Section 3.1 as the
input to the LSTM units. Our RNN consists of two layers
of stacked LSTM with 512 hidden states, and the hidden
representation of the top layer units are used to generate the
probability of action classes through a softmax layer. We
refer the reader to [8, 4] for the detailed equations of the
LSTM units. Figure 3 shows an overview of the sequence
labeling network.

To handle action labeling for general video sequences,
we use the stateful LSTM to accommodate inputs that con-
tain multiple instances and of variable lengths. The stateful
LSTM accepts input of the current frames, but inherits the
hidden state values from its previous iteration. This way,
there is no need to specify the sequence length when initial-
izing LSTM units. More importantly, in complex and long
videos, a RNN with large temporal unroll step is not op-
timal because multiple actions with different patterns may

be present within one temporal unroll and weights update.
With stateful LSTM, the time unroll step can be set to be
much smaller than the video length yet still capture long-
term dynamics because of its state-inheritance nature. After
all frames of a video are processed, the LSTM layer will
reset its hidden state to make ready for the next video.

3.3. Action Detection with CNNs

We consider the task of action detection in the context
of understanding complex activities, which typically in-
volves a set of consecutive action instances from multiple
classes. To efficiently localize these actions, we develop a
two-stage detection method based on the Stack-frame CNN
network [28]. Our detection pipeline takes a video as in-
put, and first generates a pool of generic action proposals
using an efficient CNN with binary output. We then learn a
second CNN to classify the proposals into multiple classes.
Both networks have the structure of stack-frame two-stream
CNN that takes the stacked frame representation as input.
The fc7 features of the two streams are concatenated and
fed into a linear SVM for the final output. Figure 4 shows
the overview of the detection module.

Action proposal generation. We reduce the search
space for the action detection by first filtering out back-
ground and misaligned candidate windows. To achieve this,
we build a CNN-based binary classifier, which is then ap-
plied to the input video sequence in a sliding window man-
ner. The filter CNN predicts an actionness score for each
window in its exhaustive search. The actionness score is the
probability of the window being an action instance. Specif-
ically, we evenly sample k = 10 frames and stack them
together as the input to the CNN for each window.

We generate a pool of action proposals by removing the
windows with probabilities lower than a threshold. We val-
idate the threshold to strike a balance between speed and
accuracy. In this work, it is empirically set to 0.8, which
results in a 95% reduction in the number of windows and
still maintains a recall rate of 1 with 0.5 IoU threshold.

Action instance classification. For each candidate win-
dow that passes the filter CNN, a multi-class CNN is used
to predict the action label and its confidence scores. We
further apply the non-maximum suppression (NMS) with a
threshold of 0.3 to generate the final detection outcomes.

Concretely, we evenly select k = 10 frames from each
sample window and stack the frame representations. Note
that each dynamic image is computed using 5 consecutive
frames centered at the frame of interest. By doing so, the ac-
tual frames used to obtain the video representation extends
slightly beyond the windows itself, giving it extra context
information [7].



Figure 4. Overview of action detection module. We first compute
the frame representation on 10 evenly sampled frames in the win-
dow. We then apply the two-stream stack-frame CNN. Note that in
the process of obtaining dynamic images, frames outside the pro-
posed window is used, which provides extra context information.

3.4. Instance-Aware Action Labeling Network

We now integrate the frame-wise action labeling module
with the action detection module to achieve more consistent
parsing of the input videos. The action labeling network
captures rich context at the frame and category level while
the detection module extracts instance-level information for
the action units. A two-stage labeling process is used to
exploit the synergy between those two modules.

Our first stage trains the detection module to generate a
set of temporal bounding boxes, each box is associated with
an action class label and a confidence score. We then use
the detection results to compute a Frame Label Prior matrix
(FLP). Specifically, let the detected actions of class l be a
set of Nl temporal windows, denoted by {(sli, eli, cli)}

Nl
i=1,

where sli, e
l
i are the start and end frame index, and cli is the

confidence score. For each action class, we select top M =
10 windows with highest confidence scores and sort them
according to the scores. Denote the total number of action
classes as L. At each time step t, we define a label prior
matrix Dt of size M by L as follows,

Dt(m, l) = clm1(t ∈ [slm, elm]) (3)

In the second stage, we design a two-branch fusion net-
work to integrate the detection outcomes with the frame-
wise action labeling task. Using the FLP matrix as input,
we construct a convolution branch to encode the matrix
into a feature vector containing the action instance infor-
mation. Our convolution branch has two convolution layers
followed by a fully connected layer with 64 output neurons.
The output is concatenated with the hidden vector of the

Figure 5. Two branch labeling network. The detection output
around frame at time t (dark gray) is encoded using a small con-
volution network. The encoded instance cue is concatenated with
the frame-level feature extracted by LSTM for prediction. Frame
level features is computed according to Sec 3.1.

top-layer LSTM for the frame label prediction.
Figure 5 illustrates the structure of fusion network. Dur-

ing the prediction of frame label at time t, a slice of the array
FLP around time t serves as input to a convolution branch.
We jointly train the instance-aware labeling network end-to-
end to obtain the final labeling prediction, and to ensure the
CNN branch learns how to correctly extract action instance
knowledges from FLP.

4. The GADD Dataset
We build a new RGBD video dataset for complex ac-

tivity analysis, which is specifically designed to study the
problem of sequence labeling and action detection. Unlike
existing datasets that only contain one action per video, the
RGBD videos in our dataset consist of a sequence of con-
secutive actions. Such scenarios are commonly seen in the
real world problems and localizing actions becomes more
challenging in this dataset. Figure 6 shows some sample
frames from the GADD dataset. The dataset contain over
500 videos, each 1-2 minutes long. There are at least 12
action instances within each video. We now describe the
details of the dataset.

Actions Our dataset contains 22 different action classes
(23 with background class) of gym workout exercises (push
up, KB swing, lunge twist, etc.). Four of these classes re-
quire the subject to use a tool, therefore human object inter-
action is introduced. The reason for choosing gym workout
exercises is that all of them are well-defined actions and
their starting and ending point can be easily determined,
which is crucial for detection tasks where temporal local-
ization is the main challenge.

Subjects There are in total 17 subjects participated in the
video recording process. Different subjects chose different



Figure 6. Sample frames from the GADD Dataset. These exam-
ples show the RGB and corresponding depth frames of 4 subjects
performing 4 different exercises taken from 4 separate view points.

subset of the actions to perform. Once they have chosen,
they perform all of them in a row, thus creating an action
sequence.

View Points We set up cameras from 4 different angles on
recording every videos. They are separated in a 180◦space,
at roughly about 0◦, 60◦, 120◦and 180◦respectively. Be-
cause the subject will be constantly moving, the angles rel-
ative to the subject will change during filming. The four dif-
ferent views are separated far enough, which creates large
pose variation in the dataset. We assume the location of the
cameras are unknown for our task.

Data Formats We collected the data using Microsoft
Kinect v2, and recorded the RGB and depth maps for each
frame. After filming all the actions, we manually label each
actions by its start and end frame numbers. Each video se-
quence has three components: Depth frames, RGB frames
and its action annotations.

For the depth channel, each frame is of resolution
512x424, with each pixel value representing the distance
between a real world point and the kinect camera plane. The
depth value is the unit of mm, and is quantized using 16 bit
unsigned integer. For the RGB channel, we center crop each
frame to 1080x1080 to retain its aspect ratio, and then re-
sized to 270x270. Note that we do not use the RGB cues in
this work. For the annotation, we record the annotated class
and frame indices of every action instances.

Datasets Comparison We present a summary of exist-
ing public RGB(-D) datasets for action understanding and
compare them with our GADD benchmark in Table 1. We
can see that our video sequences have much more action
instances per video than other datasets.

5. Experiments

We evaluate our instance-aware sequence labeling
method on the RGB and depth videos in the GADD dataset.
We first describe experimental setup and evaluation metrics

Datasets Videos Class Subjects
view

points
# actions
per video Modalities

Activity
Net 20000 200 - - 1.54 RGB

UCF-101 13320 101 - - 1 RGB

HMDB51 7000 51 - - 1 RGB
MSR-

Action3D 567 20 10 1 1 D+3DJoints

CAD-60 60 12 4 - 1 RGB+D+3DJoints
RGBD-

HuDaAct 1189 13 30 1 1 RGB+D
MSRDaily
Activity3D 320 16 10 1 1 RGB+D+3DJoints

CAD-120 120 10+10 4 - 1 RGB+D+3DJoints
Office

Activity 1180 20 10 3 1 RGB+D
NTU

RGB+D 56880 60 40 80 1 RGB+D+IR+3DJoints

GADD 900 22 18 4 12 - 16 RGB+D

Table 1. Comparison between GADD dataset and some of the
other popular available datasets for 3D video understanding.

in Sec. 5.1. Then, we report the results on sequence label-
ing with comparisons to several strong baseline methods,
which is the focus of this paper. Finally, we show that not
only detection can help improve labeling, but labeling can
boost detection performance as well, indicating that action
detection and sequence labeling are mutually beneficial.

5.1. Data Preparation and Evaluation

Dataset Split & Training details We split the dataset into
two training sets of 300 (TR1) and 100 (TR2) videos respec-
tively and a test set of 100 videos. For the training of the fu-
sion network, we use TR1 training set to learn the detection
system first and TR2 training set to train the instance-aware
labeling model.

For the stack CNN in action detection system, we train
the network on TR1 and adopt the Adam optimizer with
base learning rate is 0.0001 and batch size 256. For the
frame-wise LSTM labeling network, we use the SGD opti-
mizer with a base learning rate 0.01 and batch size 1. This
is also trained on TR1. Then we apply the trained detection
CNN and frame-wise LSTM on TR2 to obtain the detection
and labeling results, which are used to train the instance-
aware labeling net on TR2. For this network, we use the
Adam optimizer with base learning rate 0.00001 and batch
size 1.

Evaluation metrics We employ two different evaluation
metrics for the task of sequence labeling. One is accu-
racy which reflects the frame level performance (how many
frames are correctly labeled). The other is f-score which is
calculated with precision and recall. The f-score reflects the
class specific instance level performance.

For the task of action detection, we compute the
intersection-over-union (IoU) between the predicted tempo-
ral windows and the ground truth and consider the detection
is correct if IoU> 0.5. We then use the average precision to
report the results on each class and the mean average preci-
sion (mAP) for overall performance.



Accuracy(%) f score
CNN 76.32 0.72
LSTM 78.45 0.74
Attention LSTM[40] 80.27 0.74
Bi-LSTM[30] 79.88 0.75
RankingLoss LSTM[18] 80.75 0.76
LSTM (with smoothing) 80.33 0.73
LSTM (instance-aware) 83.78 0.81

Table 2. Sequence labeling accuracy and F-score fused with detec-
tion results for RGB videos. Noticeable improvement can be seen
in both evaluation metrics.

5.2. Results on Sequence Labeling

Action Labeling We show the results of sequence label-
ing in Table 2 and Table 3 for RGB and depth video respec-
tively. We compare the performance of the basic LSTM
model, three state-of-the-art methods [40, 30, 18] and our
fusion LSTM model based on the same video representa-
tion. To put our instance-aware fusion method in context,
we also implemented naive smoothing method (majority
voting) for comparison.

First, we note that by modeling the long-term dynam-
ics with the basic LSTM, we witness significant improve-
ments compared to the traditional CNN. Attention LSTM
performs slightly better than basic LSTM, thanks to its at-
tention mechanism that is capable of focusing on relevant
frames and capturing longer-range dynamics. By introduc-
ing temporal consistency constraints, [30, 18] also achieve
slightly better performances. However, our instance-aware
LSTM network fused with detection can effectively model
global dynamics, outperforming the other state-of-art meth-
ods consistently. The fusion of detection and sequence la-
beling generates a noticeable improvement in both accu-
racy and F-score, indicating the synergy between action de-
tection and sequence labeling. Moreover, comparing the
last two rows in the table, we can see moderate improve-
ments on accuracy but large jumps in f-score. This clearly
indicates that our instance-aware labeling method works
more effectively for action instances, while naive smooth-
ing method treats every frames equally. Although smooth-
ing operation can improve accuracy, most improvements is
happening within background frames. When applying such
operation on complex sequences, it will blur the instance
boundaries, leading to no improvements or even worse re-
sults in f-score.

Figure 7 visually shows the labeling results with and
without the use of LSTM. Figure 8 gives a detailed class-
by-class comparison on the f score induced by the fusion of
action detection. We can see that our joint method outper-
forms the basic LSTM across all the action classes.

Concretely, we can make several observations from Fig-
ure 7. First, by comparing the third row to the second,

Accuracy(%) f score
CNN 78.86 0.69
LSTM 81.25 0.78
Attention LSTM[40] 81.36 0.77
Bi-LSTM[30] 81.87 0.79
RankingLoss LSTM[18] 82.03 0.79
LSTM (with smoothing) 82.13 0.78
LSTM (instance-aware) 84.56 0.86

Table 3. Sequence labeling accuracy and F-score fused with de-
tection results for Depth videos. Noticeable improvement can be
seen in both evaluation metrics.

we can see that the basic LSTM mainly corrects the short
chunks of false prediction inside an action, which produces
a smooth labeling outcomes. Second, from the forth row, we
observe that the behavior of attention LSTM has large vari-
ations: while it does capture longer-term dynamics, it also
seems to attend to irrelevant frames. In contrast, as shown
by the difference between the third and fifth row, by fusing
the detection results, our method effectively corrects false
predictions within the interior of action instances, as well as
during the transition between non-action (background) and
action, where the frame features can be ambiguous. Fur-
thermore, in comparison with the sixth row, it is evident
that the proposed instance-aware method can handle false
predictions more adaptively. Naive smoothing methods are
ineffective when a set of consecutive frames are predicted
falsely.

The performance improvement of our method is likely
due to the following reason. Within a complexity action
sequence, the frame level prediction inferred by short term
dynamics can easily make mistakes as the basic movements
of human limbs that form a complex action are likely to
appear in some other actions, which causes confusion with
local information only. The problem can be alleviated by
joint prediction with more global contextual information
from sequence history and action instances. What’s more,
the frame labels during the transition between non-action
and action are ambiguous in nature. If a correctly detected
window has high IoU for an action instance, it can facilitate
labeling of the frames during transition. However, it is note-
worthy that combining detection results of poor quality can
sometimes lead to deteriorated results, as shown in Video 3
in Figure 7.

5.3. Impact on Action Detection

While our fusion method significantly improves labeling
performance, we also found the labeling outcomes can help
boost detection performance. Table 4 shows the mAP scores
and after re-weighting the detection score with labeling re-
sults, we can see that there is a significant improvement in
the overall mAP. When the detection system localizes the



Figure 7. Comparing different sequence labeling results. Black is background, Green is an action, and Red is false prediction. First row:
ground truth. Second row: labeling results with CNN only. Third row: labeling results with added LSTM. Forth row: attention LSTM
labeling results. Fifth row: instance-aware labeling results. Sixth row: Smoothing applied on basic LSTM results. Video 1 and Video 2
illustrate how joint prediction can help improve accuracy by considering global information at instance level. Video 3 shows a failure case
due to poor-quality detections.

Figure 8. Per-class F-score of sequence labeling. With fusion with
sequence labeling, we witness performance gain on all the action
classes.

Figure 9. Per-class average precision of action detection. By the
fusion with sequence labeling, we witness performance gain on all
the action classes.

action instances, their class labels can be noisy due to lack
of long-term temporal context. On the other hand, the ac-
tion labeling can provide more stable results regarding the
action class for each frame. By fusing them together, we
are able to reduce the false positives from incorrect action
classes and achieve better performance.

Figure 9 shows detailed class-by-class improvement on
the average precision induced by the fusion of sequence la-
beling. Figure 10 shows the typical precision recall curves

Video modality mAP(%) mAP with SL
RGB 39.98 44.38
Depth 35.59 45.81

Table 4. Mean Average Precision for action detection for RGB and
depth videos. The IoU threshold is set to 0.5 during evaluation.

Figure 10. Precision Recall Curve. Left: The graph shows three
action classes with high-quality detection and three classes with
low-quality detection. Right: The graph shows the effect of se-
quence labeling fusion on detection for two action classes.

of detection from several action classes. The left panel
shows three action classes with highest PR curves and the
three with lowest ones. The right panel demonstrates the
improvement from fusion for two typical action classes,
which is evident.

6. Conclusion
In this work we have presented a instance-aware labeling

approach for dense activities labeling in complex videos,
which combines the frame level information from LSTM
with instance level information from action detection. We
explore the synergy between action detection and sequence
labeling. We design an LSTM + CNN fusion network to
jointly solve the problem, leading to consistent improve-
ments over strong baselines methods. We also build a new
large-scale RGBD dataset for complex activity understand-
ing, called GADD.
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