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ABSTRACT
We explore what names people use to describe visual con-
cepts and why these names are chosen. Choosing object
names has been a topic of interest in cognitive psychology,
but a systematic, data-driven approach for naming at the
scale of thousands of objects does not yet exist. First, we
find that visual context has interpretable effects on visual
naming, by analysing the MSCOCO dataset that has man-
ually annotated objects and captions containing the natural
language names for the object. We show that taking into ac-
count other objects as context helps improve the prediction
of object names. We then analyse the naming patterns on a
large dataset from Flickr, using automatically detected con-
cepts. Preliminary results indicate that naming patterns can
be identified on a large scale, but contrary to the conven-
tional wisdom in cognitive psychology, are not dominated
by genus for animals. We further validate the automatic
method with a pilot Amazon Mechanical Turk naming ex-
periment, and explore the impact of automatic concept de-
tectors with t-SNE visualizations.

Category and Subject Descriptors I.2.6 Artificial In-
telligence Learning — Knowledge acquisition

Keywords multimedia, learning.

1. INTRODUCTION
Categorisation and naming is central to how we describe

and interpret the physical world. A particular concept can
often be named in many different ways, though humans are
generally consistent in the names they use under a given
context. For example Ursus arctos horribilis could be called
a brown bear, Ursus arctos, bear or mammal ; while typically
the term brown bear is used. The psychology literature calls
this commonly used name the basic-level name [16] for a
concept. Under this model each concept is associated with a
single name. Clearly this is only a first order approximation,
which works well in general, but does not capture any of
the subtleties of human categorisation and naming. It is
not clear that a single basic-level name can be chosen for
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Another salmon falls prey to a brown bear at 
Brooks Falls in Katmai National Park, AK.
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Figure 1: An image-caption where the concept Ursus arctos
horibilis was described at the level of subspecies.

all categories, moreover the context of the naming choice is
known to play a significant role [15].

The primary issue with realising the context-dependent
naming seems to be one of scale, as also recognised by pro-
ponents for the basic-level name model [15]. Typical exper-
iments involve paying human test subjects to come into the
lab and name objects [3, 9]. As a result it is unrealistic to
unroll the contextual effects on naming over a large num-
ber of categories. With large scale image-caption datasets
and improved image classification techniques, we can finally
start to explore some of these subtleties.

Understanding how people name visual concepts could be
usefull for tasks such caption generation, tag suggestion and
image search. For caption generation, choosing the right
words to describe the contents of the image can have a big
impact on how natural the caption is. Basic-level names are
specific enough to get the point across but common enough
that the target audience understands. Suggesting tags is
a similar problem, we want to provide potential tags that
actually match how people describe the image. From Flickr
tag statistics, for instance, when a red fox is detected a likely
tag could be fox, whereas when a brown bear is identified the
tag brown bear would be better. Similarly search could be
improved by allowing images matched to relevant ancestor
terms to be included in results. For example the query cat
is more likely to match a domestic cat rather than a lion,
whereas the query felidae has no such bias.

In this work we present several preliminary experiments
on object naming. We first examine naming patterns in the
MSCOCO dataset, where object ground truth and human-
generated natural language descriptions are available (Sec-
tions 3). We then describe a method to determine the dis-
tribution of basic-level category names with automatic vi-
sual concept detectors on a large Flickr dataset (Sections
4). We observe that many concepts do not have a single
basic-level name. Moreover we observe that across a few



hundred classes of mammals, reptiles and birds, the level of
specificity for naming differs from concept to concept. We
also note that the quality of concept detectors has a large in-
fluence on the estimated names. In future we plan to explore
naming patterns on a much larger scale than has previously
been possible.

2. RELATED WORK
A model for how people name objects was introduced to

the psychology literature by Rosch [16]; this model used the
idea of basic-level categories. The basic-level category rep-
resents the ideal trade-off between low in-category visual
variability and high between-class visual variability. Work
by Rosch [15] notes that there are contextual effects on both
the level of abstraction used to name an object and even if it
will be named. Chaigneau et al. [3] demonstrate, using adult
subjects, that situational information changes the way sub-
jects categorise unfamiliar objects into familiar categories.

In the case naming plants and animals Lakoff [9] explains
that the genus is typically thought to be the level most com-
monly used. The reason that genus is important stems from
how it was originally defined in the Linnaean system, as a
level where each category can be easily identified.

Automatically assigning labels to images is a very active
topic within computer vision. In the standard image clas-
sification problem a classifier is trained to recognise a col-
lection of visual concepts with each concept given a single
label, which may or may not be representative of how that
concept is normally described. Convolutional Neural Net-
work (CNN) [8, 17] models are the current state-of-the-art
for this task. Building on the features produced by CNNs
some authors have used joint vector space embeddings to
define mappings from images to words mined from tags or
captions [7]. We differ from these state-of-the-art image to
text methods, in that our focus is modelling and interpreting
the psychological processes that drive naming.

Recently there has been interest in developing machine
learning techniques to choose the most appropriate name to
give to a visual object. One approach taken by Deng et al. [5]
is to optimise the accuracy-specificity trade off by using a
semantic hierarchy to select the appropriate name. This
technique does not take into account how people actually
describe objects. Ordonez et al. [13] present a model pre-
dicting the labels people will actually use to name objects.
Their model uses a text based component which trades off
name frequency with linguistic proximity and a visual com-
ponent that assesses the visual saliency of names to the im-
age. Later work extends this model to a larger number of
visual concepts and re-casts the problem to one of discover-
ing semantic Refer-to-as relationships [6]. Neither of these
models capture the important effects of visual context, nor
do they attempt to understand and interpret the patterns
in the basic-level names.

Our recent work [11] applied visual context to naming con-
cepts, the goal was to use visual features to choose names
rather than interpret how context affects naming. This work
builds upon [11] to both understand how context affects
naming and uncover patterns in naming across a broad range
of visual categories.

3. OBJECT NAMING WITH CONTEXT
We first study the effect of image and language context

on object naming by analysing the words used in image cap-

● a white and yellow plate holding three 
bananas.

● a close up of some bananas on a table 
● three bruised bananas sit on a plate 

● a large and small bowl filled with fruit.
● strawberries, bananas, apples, and 

oranges are popular snacks.
● 2 bowls of fruit sit on a table.

Banana BowlBanana ⋂

Object context: Name:

banana

Name:

⟹ fruit⟹

Object context:

Figure 2: An example where context changes the name used to
describe a concept. Top: Two example images containing ba-
nanas from MSCOCO data set. Middle: Three captions written
by mturk workers to describe each image, with valid names for ba-
nana highlighted. Bottom: Relevant visual context for the names
used. Presence of other fruits in the right image led to a collec-
tive name – this is one of the mechanisms of context-dependent
naming.

tions. To this end, we use the Microsoft Common Objects in
Context (MSCOCO) [10] dataset to show that context has
a measurable and interpretable effect on how objects are
named in captions. Our method considers the caption word
statistics for naming each object and naming prediction ac-
curacy with and without additional image/caption context.
We use decision tree classifiers to show concrete and inter-
pretable cases where context has an effect on naming. An
example of how context can effect concept naming is shown
in Figure 2.

3.1 Object naming in MSCOCO
The MSCOCO training set has over 80000 images each

with five captions collected from Amazon Mechanical Turk [4].
Also available are manual annotations identifying which of
80 concepts are present in each image. These annotations
were collected independently of the captions and with tech-
niques in place to ensure that if a concept is in the image it
will be annotated.

We define objects in terms of the WordNet [12] synsets,
which are groups of words which have the same meaning.
Synsets are arranged hierarchically, where a synset’s ances-
tors (called the hypernyms) are more general terms, while a
synsets children (called hyponyms) are more specific terms.
For example the word cat in the sense of a feline mammal
has a direct hypernym feline and a direct hyponym domestic
cat.

We first manually matched each of the 80 concepts to a
unique node in WordNet. We then take the manually an-
notated concepts in each image as concept ground truth.
The naming ground truth comes from parsing the five cap-
tions for each image as follows. The nouns in each caption
are identified using a parts of speech tagger, then uni-grams
and bi-grams are formed from the words surrounding each
noun. Each of these n-grams is then matched to the Word-
Net hierarchy and filtered to keep only those words which
are ancestors/parents of the ground truth concepts for that
image. Overlapping n-grams are then removed by keeping
only the most specific; defined as the one that matches to
the deepest node in WordNet. This ensures that the bi-
gram tennis racquet is matched to the tennis racquet synset,
rather than the racquet synset. While the uni-gram racquet,
occurring alone, is matched to the racquet synset.
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Figure 3: Improvement in name prediction accuracy when
context is given compared to no context. All 80 MSCOCO
concepts are shown ordered by improvement. See Sec 3.3
for details.

3.2 Measuring context effects on naming
We first identify the number of objects with more than one

common name in the corresponding captions. For these con-
cepts we show that the other concepts present in the scene
will have an effect on how the concept is named. We train
classifiers to predict object names with contextual informa-
tion, i.e., the ground truth of other objects in this dataset.
This context-name model learn random forest classifiers to
predict which name will be used for each concept, given the
full set of object ground-truths in each image. The input
to context-name is a boolean vector with 80 elements, indi-
cating which concepts are in the image. The output is one
of several possible names for the concept. Random forest
is preferred over other classifiers as it helps interpretation.
We use the Gini importance metric [2] to understand which
contextual concepts are the most relevant to making a nam-
ing choice. This metric computes the decrease in the Gini
impurity for each of the features, averaged across all deci-
sion trees in the forest. This model is compared against a
frequent-name baseline, which always assigns the most com-
mon name for each concept. For example if images marked
as bicycle in the concept ground are most frequently named
as bike in the naming ground truth then the name bike is
always predicted.

3.3 Results: naming with context
On the MSCOCO dataset, of our 80 concepts, 48 have a

second common name used at least 10% as frequently as the
most common name. This suggests that a single basic-level
name is not an appropriate simplification for a large number
of concepts.

To learn the context-name model, we use 80% of the
MSCOCO training set for collecting name counts and train-
ing our name classifiers. A further 10% is used for select-
ing hyper-parameters. With the final 10% used for testing.
Each random forest name classifier has 100 estimators, the
minimum number of samples for splitting an internal node
is 4 and the minimum number of samples per leaf is 2.

Out of the 48 concepts, 9 showed an improvement in nam-
ing accuracy of greater than 5% when all ground truth con-
cepts were given as context; this is in comparison to always
choosing the most common name. Results are shown in Fig-
ure 3. The most-improved concepts are car, ball, orange and
backpack. In the case of orange the most common names are
fruit, oranges, food. While the most important object con-
text as measured by the Gini metric are apple, dining table
and bowl. Intuitively, when people name an orange they are

more likely to use the collective term fruit in the presence of
other fruit such as oranges; the concept bowl likely indicates
that there is a fruit bowl in the image. In the case of ball
the most common names are tennis ball, baseball and ball
while the most important concepts are tennis racket, base-
ball bat and baseball glove. This is a case where the concept
has multiple sub-concepts each with their own basic-level
name. The context allows us to differentiate between the
sub-concepts and select the most appropriate name. There
are five concepts where the frequent-name baseline outper-
forms the context-name method. These concepts are char-
acterised by relatively small testing and training sets. Clas-
sifier over-fitting is the likely cause of the performance dif-
ference.

4. OBJECT DETECTORS TO NAMES
We extend the analysis of naming patterns in Section 3 to

a large number of objects. To this end, we automatically de-
tect visual objects in a large image-caption dataset. We then
use the object names present in the caption as the naming
ground truth for the corresponding concept. In this analysis
we restrict ourselves to objects from the animal kingdom,
allowing a clean definition of specificity under the rigid tax-
onomical structure of the Linnaean system.

4.1 Large-scale visual object naming
We use the SBU 1-Million image-caption dataset [14],

sourced from Flickr. This dataset consists of 1-Million im-
ages with captions that are likely to be visually relevant.

Any sub-string of the caption is a candidate for the de-
scription of the visual concept. In our case, however, we
have chosen to only use uni-grams or bi-grams which match
to nodes in the taxonomy. The matching method is sim-
ilar to the text to concept matching described in Section
3, though we match to the ITIS animal taxonomy rather
than WordNet. An n-gram is matched to a node in the tax-
onomy using exact string matching to vernacular names or
scientific names. Word concatenation, lemmatization and
punctuation removal are used to improve the recall.

Defining objects. We adopt ITIS to define the objects in
the animal kindom. ITIS [1] is a collection of taxonomic in-
formation for plants, animals, fungi and microbes around the
world. ITIS was developed and continues to be supported
by a collection of federal agencies in the United States. The
system has over 690000 scientific names and 124000 com-
mon names arranged hierarchically by their classifications
e.g. kingdom, class, genus and species. The ITIS taxonomy
is used in preference to WordNet because the depth of a
synset from the root does not have a natural interpretation,
whereas in ITIS the depth corresponds to groups such as
class, genus or species.

Given an image in the SBU dataset, we automatically de-
tect the object label based on pre-trained visual classifiers.
Specifically, we first identify the synset label using the Ox-
ford VGG 16-layer network [17], which was pre-trained on
ImageNet. This network is trained to classify 1000 differ-
ent visual synsets in WordNet. We map these synsets to
nodes in the animal taxonomy using a string matching from
synset lemmas to taxonomy vernaculars and taxonomy en-
try names. The resulting mapping is many-to-many, though
typically taxonomy entries only have one synset mapped to
them. We only consider the most confident, i.e., top one,
visual prediction of the VGG network for each image. If an



image has a top one visual concept that is not an animal the
image is ignored.

Matching objects to names. We select a sub-tree
of the taxonomy such as Mammalia (Mammals) or Aves
(Birds). For each image we match the highest confidence vi-
sual concept to names in the caption. We require that both
the visual concept and the possible name map to taxonomy
entries in the sub-tree of interest, and that the name and
the visual concept have to have a descendant/ancestor rela-
tionship. If this condition is met then the name is counted
as a way of describing the visual concept. The reason for
using such a strong condition is that we can be far more
confident that a name is actually being used to describe a
visual concept if both the classifier and caption agree with
respect to the taxonomy.

4.2 Analyzing large-scale naming patterns
Using both automatically detected concepts and the names

matched to the ITIS taxonomy we explore how different
classes of animals such as birds, mammals, reptiles, are de-
scribed. We count both the frequency of concept/name pairs
and concept/taxonomy level pairs. The frequency of each
name for a concept gives a fine grained look at how a con-
cept is described. Normalising the taxonomy level counts
independently for each concept gives us a broad overview of
the level of specificity used.

Using the SBU 1-Million image-caption dataset we calcu-
late the level at which each animal concept is named. There
are over 59000 images in the SBU dataset which both trigger
an animal classifier and have a descendant/ancestor animal
name in the caption. Figure 4 shows the results for the Mam-
malia class. We can see that, for the subset of mammals
which we can detect, many are commonly described at only
one level. This is consistent with the idea that many con-
cepts have a basic-level at which they are described. There
are also a number of cases where this does not hold, and
multiple names are used with similar frequency to describe
the same concept. For example black bear and bear are used
with very similar frequency to describe the animal Ursus
americanus. This supports the idea that a single basic-level
is not applicable in all cases.

Using Figure 4 we see that animals in the Mammalia class
are commonly described at the level of species, genus or fam-
ily. Similar figures for both Aves (birds) and Reptilia (Rep-
tiles) are provided online1. Aves are typically described at
the level of class by the name bird or occasional at the level of
family or genus, while Reptilia are typically described at the
level of order or genus. This leads to the observation that an-
imals in the class Mammalia are, in general, described more
specifically. We suspect this is because mammals often have
shape differences which are obvious at human scales. Fur-
ther confirming this is the observation that the classes of
birds and reptiles which are described at more specific levels
tend to be large and have distinctive shapes such as ostrich,
black swan, alligator and iguana. This is consistent with the
claim that distinctive shapes are important in categorisation
and naming [9].

4.3 Mechanical Turk naming analysis
We conduct a small scale animal naming experiment on

Amazon Mechanical Turk (AMT) to act as a pilot valida-

1 http://users.cecs.anu.edu.au/˜u4534172/animal naming
heat maps/

Animal MTurk Names SBU Names

Dasyurus
Bos ox cattle

Canis lupus wolf, dog wolf, dog
Ursus arctos horribilis bear brown bear, bear

Cebus capucinus capuchin monkey
Marmota squirrel

Ailurus fulgens red panda red panda
Elephas maximus elephant elephant
Vulpes lagopus arctic fox, fox
Panthera leo lion

Table 1: Common names selected for each animal. Names
are in order from most frequent to least. Only showing
names that occur in at least 10% of cases with a matching
name, and with the total count greater than 20.

tion of the large scale naming results in Section 4.2. We
ask AMT workers to label 30 images for each of 10 animal
categories with the name they would use to describe the
animal. Three different AMT workers are assigned to each
image, giving a total of 900 judgements. These judgements
are then matched to the animal taxonomy and filtered as in
Section 4.1.

The names chosen by turkers, shown in Table 1, demon-
strate that for some animal categories multiple names are
commonly used (eg arctic fox and fox). Moreover, we see
that the results are similar to those obtained automatically
from the SBU dataset. For example Canis lupus, Panthera
leo, Elephas maximus and Ailurus fulgens all have the same
most common name across both datasets. In the case of Ur-
sus arctos horribilis (brown bear) we see that turkers tended
to use more general names than those used in the image-
caption corpus. We suspect that this is because people have
greater contextual information about the photos they up-
load themselves, which encourages the use of more specific
names. Note that mechanical turk names for Cebus capuci-
nus (white-headed capuchin monkey) and Dasyurus did not
match the taxonomy. Dasyurus is a nocturnal marsupial
native to Australia and New Guinea, so it is reasonable to
assume that the annotators could not identify it correctly.
Cebus capucinus was overwhelmingly described as a monkey,
though it is technically a new world monkey, this disconnect
between the ITIS vernaculars and the names being used by
turkers is the reason Cebus capucinus was ignored.

These pilot results support the ideas that some animals
are commonly named in different ways with similar frequency
and that the specificity with which animals are named may
vary.

4.4 Naming and concept detector performance
The concept detector we used was a state-of-the-art CNN

trained on ImageNet, the top-1 performance of which is ap-
proximately 70% [17]. To qualitatively observe the effect of
visual detection on naming, we visualise the images matched
to different names of the same object using a t-Distributed
Stochastic Neighbor Embedding (t-SNE) [18]. t-SNE is an
unsupervised approach for embedding feature vectors into a
low dimensional space; it has been shown to produce good
visualisations for high-dimensional data. Our original fea-
ture space is 4096 dimensional and extracted from the second
last layer of the VGG 16-layer CNN.

The t-SNE embedding for Ursus maritimus (polar bear)
shown in Figure 5 divides the images into at least three dis-

http://users.cecs.anu.edu.au/~u4534172/animal_naming_heat_maps/
http://users.cecs.anu.edu.au/~u4534172/animal_naming_heat_maps/


Figure 4: The level of names used to describe different mammals. The first row is the most general level, and the last is the
most specific. Each column is a different animal corresponding to a visual classifier. Darker colours indicate larger counts;
with columns normalised. Each column must have at least 20 detections to be included.

tinct regions. In the upper right are have polar bears in icy
environments, in the lower left are polar bears swimming in
the water and in the middle are polar bears in enclosures or
other environments. The name polar bear is used relatively
uniformly throughout the space, the name bear is primarily
used in the middle section and generally not in the upper
right hand corner where the polar bears are in icy environ-
ments. This indicates that people are less likely to name
Ursus maritimus as bears when they are shown in a visually
icy context.

The t-SNE embedding for Cygnus atratus (black swan),
Figure 6, shows a number of classifier failures. All the images
in this figure were classified as Cygnus atratus. The upper
right of the figure shows white swans, the lower right shows
ducks, while the left of the figure is mostly black swans. It is
clear from this that the Cygnus atratus is typically described
as a black swan and that the other names duck and swan
are mostly spurious detections. The names duck and swan
slipped past the caption matching procedure because they
are different possible names for black swan.

It is interesting to note that the t-SNE embedding uses
the same CNN features which are used for classification by
the fully connected output layer, and that these features
generally show separation between clusters of errors in the
classifier. We should be able to remove a number of classifier
errors by training more classifiers on animal classes and then
setting a higher detection cut-off. This would reduce the
recall, which would necessitate using a much larger dataset.

5. CONCLUSION AND DISCUSSIONS
In this work we have identified that assigning a single

basic-level name to all visual concept is in-sufficient to cap-
ture the complexities of naming and categorisation. We
show this on both, a dataset with manual ground-truth con-
cepts (MSCOCO), and a much larger image-caption dataset
(SBU) through automatic concept detection. Preliminary

experiments on the MSCOCO dataset show that in some
cases, such as collective naming and sub-concept naming,
the effect of context on the name chosen can be interpreted
and identified automatically. On the SBU dataset we demon-
strate that an entirely automatic method is a feasible way to
identify interpretable naming patterns on a large scale. Pre-
liminary results indicate that mammals, reptiles and birds
are typically described at different levels of specificity.

There are a large number of contextual factors that are
thought to affect naming, many of which have remained rela-
tively unexplored on a large scale. We propose to explore the
effects of an individuals context on the names they choose,
for example geographical region, tagging vs captioning and
specialised knowledge. In doing so we hope to better under-
stand how and why people name concepts they way they do.
This should enable us to improve text generation systems,
by tailoring their outputs to an individuals context.
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