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ABSTRACT
This paper studies the use of everyday words to describe
images. The common saying has it that a picture is worth
a thousand words, here we ask which thousand? The pro-
liferation of tagged social multimedia data presents a chal-
lenge to understanding collective tag-use at large scale –
one can ask if patterns from photo tags help understand
tag-tag relations, and how it can be leveraged to improve
visual search and recognition. We propose a new method
to jointly analyze three distinct visual knowledge resources:
Flickr, ImageNet/WordNet, and ConceptNet. This allows
us to quantify the visual relevance of both tags learn their
relationships. We propose a novel network estimation algo-
rithm, Inverse Concept Rank, to infer incomplete tag rela-
tionships. We then design an algorithm for image annotation
that takes into account both image and tag features. We
analyze over 5 million photos with over 20,000 visual tags.
The statistics from this collection leads to good results for
image tagging, relationship estimation, and generalizing to
unseen tags. This is a first step in analyzing picture tags
and everyday semantic knowledge. Potential other appli-
cations include generating natural language descriptions of
pictures, as well as validating and supplementing knowledge
databases.
Categories and Subject Descriptors: H.2.8 [Database
applications] Data Mining
Keywords knowledge graph; social media; folksonomy

1. INTRODUCTION
An image is worth a thousand words, but which thou-

sand? A particularly interesting aspect of this question is
how people use thousands of everyday words to describe pho-
tos and videos on the web. The sheer volume of visual data
presents both a challenge and an opportunity. The chal-
lenge is in understanding collective photo tagging behavior.
With users posting everything from family and social events,
daily life, and amateur photography, has photo tags evolved
into a language of its own? Do words in natural language
and words used in photo tags differ (and how, if they do)?
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The opportunity that comes with this challenge is to lever-
age such understandings and design better systems to orga-
nize and search for pictures. Specifically, insights on visual
tag vocabulary will help a number of applications: better
visual search, improved picture annotation and tag sugges-
tion, and enriching encyclopedic knowledge-bases with more
visual content.

Online social tagging and automated photo annotation
has been a very active research area for more than a decade,
yet there are three gaps in the current approaches. The first
gap is between the understanding of general tagging behav-
ior[3, 9] and the practice of automated visual tagging [7].
This is in part because tagging behavior studies rely on semi-
manual approach in classifying tags and surveying tagging
practices, and there has not been sufficient data to connect
the findings on tag types and tagging motivations to large
amounts of visual data. The second gap is between visually
recognizing a pre-defined list of words, and the real-world
knowledge that express relationships among these words.
Visual recognition systems has mostly relied on a particular
relationship, such as co-ocurrence statistics [11, 36], pre-
defined lexical hierarchical structure [13], data-driven graph
structures [30]. With maturing resources to encode human
knowledge and everyday relationships become available [5,
21], it is conceivable that this gap will be closing. The third
gap is in addressing the long tail in visual recognition. The
long-tail phenomenon, that there are a large number of items
not occurring in the most popular part of the distribution,
has been observed picture tags [9, 40] as well as many other
problem domains such as recommender systems [24]. Vi-
sual recognition efforts tend to concentrate on the head of
the distribution, acknowledging that recognizing rare tags
is difficult. With reliable prior information about how tags
relate to each other and models that effectively shares infor-
mation across different tags, this gap can also be narrowed.

This work brings together several large-scale visual and
semantic resources to analyze picture tags. We propose
novel methods to connect the following resources: an an-
notated visual ontology ImageNet, online social tagging col-
lections from Flickr, and the commonsense reasoning en-
gine ConceptNet. Specifically, we jointly analyze ImageNet
and Flickr photos to quantify how visually relevant a tag
is, addressing the first gap. We then link photo tags with
everyday knowledge from ConceptNet. Specifically, we pro-
pose Inverse Concept Rank (ICR), a novel network infer-
ence method from co-ocurrence statistics, for estimating la-
tent relations between visual tags and constructing better
tag space similarity, addressing the second gap. Lastly, we



propose a scalable approach for simultaneously learning and
recommending many tags to photos. This approach uses the
statistics from our analysis of visual and knowledge sources,
and optimizes the MatchBox model, originally designed for
large-scale recommender systems for long-tailed content, ad-
dressing the third gap. We report picture tag statistics on a
collection of over 5 million photos, more than 20,000 words
and 450K commonsense relations. Our tag recommenda-
tion approach is tested on an annotated Flickr dataset with
more than 200K photos. The pilot evaluation yields over
70% precision among top-5 tags and 0.35 average precision
scoring all tags. Our work analyzes data from openly avail-
able sources, and we will also make our data available at a
companion website [2]. We see our method as taking the
first steps towards closing three prominent gaps in social
photo tags. Our method and results can lead to inquiries in
several additional areas: to use tag relation for constructing
sentences, to rank tags for their visual informativeness, and
additional models to encode tag prior.

The main contributions of this work include:

• Novel joint analysis of three visual and semantic re-
sources, connecting visual semantics to large-scale photo
tagging behavior (Sec. 2).

• Inverse Concept Rank, a new model for estimating tag
relationships from their co-occurrence statistics (Sec. 3).

• An approach for photo tag recommendation using both
visual features, tag statistics, and semantic relation-
ship (Sec. 4).

• Quantifying the visual relevance of both individual
tags and tag relationships, mapping over 20,000 every-
day words and their relations for the first time (Sec. 5).

• An evaluation on more than 200K photos, with promis-
ing results for photo annotation, generalizing to unseen
tags, as well as relationship graph estimation (Sec. 6).

2. VISUAL AND SEMANTIC RESOURCES
We establish novel connection among three well-known

visual semantic resources. This crucial connection enables
us to analyze tens of thousands of photo tags and their visual
and semantic relations for the first time.

The first resource is Flickr photos and tags. Being one
of the most popular online photo sharing platforms, Flickr
hosts billions of photos and makes their metadata available
via its application programming interface (API). A fraction
of photos are assigned one or more tags, a free-text string
used (typically by the owner) to describe and organize the
photo collection. This work also uses owner and photo con-
tent information on a relevant subset of Flickr photos.

The second resource is ImageNet [13]1, a research re-
source that annotates millions of pictures of nouns in the
lexical database Wordnet [17]. ImageNet is organized along
synsets, each synset is associated with a number of images,
each image is deemed visually relevant to the corresponding
meaning in Wordnet. There are about 14 Million annotated
images in 21,841 synsets in total. These annotations were
collected by crowd-sourcing, and verified by humans.

1 http://image-net.org

Table 1: Summary of notations.
Notation Meaning Defined

X,xi Photo(s) and their features Sec 4
t, ti, T tag/concept, tag vocabulary Sec 2
s,S ImageNet synset Sec 2
ξtj Tag informative measure Sec 2

B, bij Flickr bigram count Sec 2
G, gij Tag/concept relation graph Sec 2
W, wij Row normalized version of G Sec 2
Z, zi ICR stationary distribution Sec 2
e, ei Vector constants Sec 2
ν ICR restart distribution Sec 2
α ICR teleportation probability Sec 2
R, rij Labels, photo-tag association Sec 4
Y,yj MatchBox: tag features Sec 4
U,V MatchBox: latent factors Sec 4
λ MatchBox: regularization weight Sec 4
κ MatchBox: # latent dimensions Sec 4
m,n, p, q MatchBox: data dimensions Sec 4
L,U MatchBox: labeled/unlabeled sets Sec 4
JR, JM Objective functions Sec3&4
ε Error term Sec3&4
h(ε) Loss function Sec3&4
ρ, θ Tag-pair polar coordinates Sec 5
i, j, k, u, v General index –

The third resource, ConceptNet [21], is a semantic net-
work based on Open Mind Common Sense2. Statements
about everyday facts are collected online via a crowd-sourcing
website, and are verified using a voting system. The state-
ments are stored in a tuple format, with each tuple consist of
a pair of concepts and a relation, such as a zipper is Usedfor
a jacket. Note that these relationships are distinct from the
ontological relationship encoded by WordNet. We choose
ConceptNet over other large scale knowledge bases [5, 42]
as such extensive coverage of everyday terms is not found
in other language-focused sources such as Wikipedia. Here,
ConceptNet is used to understand the relations between ev-
eryday words that are used to describe pictures.

We acquire and process data for each of these resource
in three steps. Detailed data statistics are described in
Section 5. (1) Obtain the original image URLs from Im-
ageNet, keep images that are from Flickr. Only for these
images we have both a visually describable concept (from
ImageNet) together with rich metadata and user-supplied
tags (from Flickr). We then download the photo and their
metadata from Flickr, removing photo entries that are no
longer available or do not have tags. We refer to this data
as the ImageNet/Flickr collection. (2) Acquire ConceptNet,
both version 43 and version 54. We keep statements that
are in English and has one of fourteen most common rela-
tions, i.e.IsA, HasA, ConceptuallyRelatedTo, UsedFor, At-
Location, DefinedAs, InstanceOf, PartOf, HasProperty, Ca-
pableOf, SymbolOf, LocatedNear, ReceivesAction, MadeOf.
The other relations are either not directly recognizable in
images (e.g. HasSubevent) or very rare (e.g. HasPainChar-
acter). The resulting data are in list-of-triplet format, e.g.
CapableOf,butterfly,fly. (3) Normalize the different vocab-
ularies from the three resources. We use the “2+2lemma”
dictionary [4] that includes 80,431 words. This dictionary
also includes a mapping to lemmatize each word to one of

2 http://openmind.media.mit.edu
3 http://csc.media.mit.edu/docs
4 http://conceptnet5.media.mit.edu

http://image-net.org
http://openmind.media.mit.edu
http://csc.media.mit.edu/docs
http://conceptnet5.media.mit.edu


32,606 “headwords”. For example, funnier, funnily, funniest
all map to funny.

We compute several counting statistics from these datasets
to help characterize the relationships between photo tags of
Flickr, visual synsets from ImageNet, and semantic relations
from ConceptNet. Statistics on tens of thousands tags al-
low us to ask and start answering a few questions about the
properties of photo tags and their relationships. Such as: If
we were to use a thousand tags to distinguish visual con-
tent, which thousand should we use? Which tags are not
about the picture content, but about the context that they
were taken? Which tag-tag relationships are reflected in im-
ages, which aren’t? Are there new relationships that we can
discover from tag statistics, what would they be?

2.1 Tag statistics
The first statistic is called visual informativeness, derived

from counts #(si, tj) for tag tj appearing in visual synset
si. Specifically, this is counted as the number of distinct
users that has issued tag tj for any photo in si. Unique user
count is an effective way of denoting photo tags when a user
is uploading and tagging in batches [23, 28] – we found one
synset contain 50 photos from the same user tagged with
just photo and canon, for example. We estimate p(si|tj)
by normalizing along each tag, i.e. #(si, tj)/

∑
i #(si, tj).

This visual word and tag association matrix is used to mea-
sure the visual distinctiveness of tags. For example, tags
such as pineapple is distinctive and should only appear in
a few synsets, i.e., p(s|pineapple) peak in synset related to
pineapple; while photo and canon (camera brand) will be as-
sociated with many synsets, i.e. p(s|canon) would be flat.
Conditioning on tag tj changes the prior distribution p(s)
over visual words: the more the change, the more visually
relevant tj is. We call this quantity visual informativeness,
and measure it with the KL-divergence [25] between the con-
ditional probability of synsets given a tag p(s|tj) and their
prior probability p(s).

ξtj = KL[p(s)||p(s|tj)] =
∑
i

p(si)log

[
p(si)

p(si|tj)

]
(1)

2.2 Association between a pair of tags
We examine two different statistics of a pair of tags ti

and tj . We first obtain the tag pair co-occurrence matrix
B, where count bij denotes the number of times that ti and
tj are used to describe the same photo together in the Im-
ageNet/Flickr collection. One natural question that arises
is, does high/low co-occurrence in bij agree with high/low
associations in ConceptNet?

To answer this question, we first need a measure of as-
sociation for a part of concepts in ConceptNet. Denote a
non-negative concept relationship graph G ∈ Rn×n+ , where
gij > 0 if concept i and j are related. In this paper, we
obtain gij by counting the number of relations that exist
between tag ti and tj .

We use a random walk model to describe the process of
coming up with a series of tags for a picture, as this was
shown to be close to human cognition in a seminal 2007
study by Griffth, Steyvers and Firl [20].

Starting from tag ti, a user makes a transition to tag tj
(i.e. use as the next tag) with a probability proportional to
gij ; and return to the initial tag ti1 with a fixed probabil-
ity 1 − α (i.e., finishing the tagging process for the current
photo). Such a random walk process has been described

as personalized PageRank (PPR) [26] or random walk with
restart (RWR) [44] in the context of web search and graph
mining. We note that the co-ocurrence of everyday image
tags is not only driven by their conceptual relationship, but
also driven by the physical colocation and other external
factors. It is a simplifying assumption to capture these dif-
ferent types of relationships with one relationship graph,
and initialize such a graph with ConceptNet and ImageNet.
However, the different relations within ConceptNet, such as
Usedfor, LocatedNear does account for a few different modes
of co-occurences.

Given a relation graph G, we generate a stochastic version
W of the graph by normalizing along each row.

wij =
gij∑
k gik

(2)

The RWR transition probability Ŵ is computed from W as
as a weighted combination between taking a step according
to W and jumping back to initial distribution ν, with a
teleportation constant α ∈ [0, 1], and e as an all-1 vector.

Ŵ = αW + (1− α)eνT (3)

Denote vector z as the stationary probability distribution
of Markov chain Ŵ, i.e, the personalized page rank vector.
z satisfies:

z = ŴT z = [αWT + (1− α)νeT ]z

= αWT z + (1− α)ν (4)

Note that the last step follows from normalization eT z = 1.
The initial distribution νi for starting from the note i is set
as a vector with a 1 in the ith position and 0 elsewhere. Vary-
ing the starting node i will give a series of different station-
ary distribution zi, forming a matrix Z = [zT1 ; . . . ; zTi ; . . .].
We use zij , the stationary probability of being at node j if
started from node i, as the association between two concepts
i and j under ConceptNet.

Detailed observations about ξt, as well as comparisons
between B and Z are presented in Section 5, and learning
algorithms that are motivated by such observations are in
Sections 3 and 4.

3. INVERSE CONCEPT RANK
It would be desirable if concept-concept, or tag-tag re-

lationships could explain the process for generating photo
tags. As seen in Figure 3 and Section 5.2, however, that
there are a number of mismatched cases between tag oc-
currence and concept relationships, this is in part due to
incomplete relations in ConceptNet, noisy counts from both
visual and non-visual tags, non-visual relations that do not
manifest in photos, and person- and event- specific factors
that are not explained by everyday semantic knowledge. In
this section we propose a model to address the first two
factors, by estimating latent relations, and unsmooth prob-
ability observations for better concept similarity.

3.1 An inverse random walk model
Section 2.2 described a random walk process of generat-

ing photo tags, and the resulting tag distribution can be
computed by personalized PageRank. Here we are facing
an inverse problem: if the stationary distributions of such
a random walk is observed (via bigram statistics B and its
normalization Z̄), but the underlying graph G is hidden or
only partially known. The goal is to “recover” a graph G



that generates Z̄. Hence we name this model Inverse Con-
cept Rank (ICR).

Let observed stationary distribution be Z̄ = [z̄T1 ; . . . ; z̄Tn ],
where each z̄i is the personalized page rank vector starting
from node i. The goal of the ICR model is to find an optimal
relationship graph G, from which an RWR process will gen-
erate Z that is close to Z̄. The objective function is define
as follows:

min
G

JR =
αR
2
tr(GTG) +

∑
i,j

h(|zij − z̄ij |) (5)

RWR(G;α)→ Z

s.t. G ≥ G0

Here RWR(G;α) is the RWR process on G with parameter
α, as in Equations 2–4; |zij − z̄ij | is an error term to be
minimized; h is a monotonic loss function – common choices
include L2, hinge loss, etc.; αRtr(G

TG) is a regularizer of
the Frobenius norm of G weighted by hyper parameter αR.
This regularizer favors smaller graph weights. G0 is an ini-
tial graph with non-negative edge weights, the inequality
constraints are element-wise on G.

3.2 Optimizing Inverse Concept Rank
The ICR objective (5) has no closed-form solution, it is

non-linear and non-convex with respect to graph entries gij
due to the RWR process. Numeric solution such as quasi-
Newton method can be used to minimize this objective.
In particular, we use large-scale non-linear solver L-BFGS-
B [32] with closed-form gradient computed as follows.

The partial derivative of JR with respect to gij , (i, j) ∈
{1, . . . , n}2 can be expressed in terms of zuv, entries in the
stationary distribution matrix and their associated error terms
εuv = zuv − z̄uv, with (u, v) ∈ {1, . . . , n}2. Applying chain
rule and matrix identities [35] to Equation (5) gives:

∂JR
∂gij

= αRgij +
∑
u,v

∂h(εuv)

∂εuv

∑
k

∂zuv
∂wik

∂wik
∂gij

(6)

Each of the three terms in Equation (6) can be computed

in closed form. ∂h(ε)
∂ε

is easily computed for all common loss

functions. For L2 loss ∂h(ε)
∂ε

= 2ε, for hinge loss we can use

a sub-gradient, or a smoothed quadratic surrogate. ∂wik
∂gij

is

computed from the normalization equation (2):

∂wik
∂gij

=
δ(k = j)∑

l gil
− gik

(
∑
l gil)

2

Here δ(k = j) is the indicator function, and the first term
only appears when k = j.

The remaining term ∂zuv
∂wik

is the sensitivity of stationary

distribution z with respect to the Markov matrix W. Golub
and Meyer [18] showed that for a irreducible Markov chain,

∂z

∂wij
= αzeie

T
j (I− Ŵ)]. (7)

Here A] is the group inverse of A, a unique matrix satisfying
AA]A = A, A]AA] = A], and A]A = AA]. ei is a
vector with 1 in the i-th position and the rest being zeros.
The group inverse can be computed with QR decomposition.
Let (I−Ŵ) = Q̂R̂ be a QR factorization, R̂ must have the
form

R =

[
Û −Ûe
0 0

]
(8)

The group inverse is given by

(I− Ŵ)] = (I− ez)

[
Û−1 0
0 0

]
QT (I− ez) (9)

Note that we represent ConceptNet as a undirected graph,
this necessarily make G irreducible, and satisfies the condi-
tion of Equation 7. Note that the computational complexity
of each gradient step is cubic in graph size n, with QR de-
composition taking O(n3) (but only need to be done once),
and the summation in Equation 6 also taking O(n3). Quasi-
Newton method finds a local minima in the JR that is close
to starting point G0. In practice, we run ICR within each
synset, saving computational time and also retaining synset-
specific relations.

Intuitively, graph G is parsimonious and will be free from
noisy chain-cooccurrences observed in B. For example, ham-
merhead (shark), atlanta is among the top tag-pairs in synset
n01494475, but this is because “shark isLocatedAt aquar-
ium”, and “an aquarium isLocatedAt Atlanta”, not because
“hammerhead LivesIn Atlanta” – impossible for an inland
city. Recovering the underlying graph G given observations
Z̄ can have a number of applications. A direct use would
be to interpret G, such as finding and filling in missing en-
tries in ConceptNet. Another type of application is to use G
as an un-smoothed version of tag correlation, this can serve
as feature for automatic or semi-automatic picture tagging.
Observations and evaluations of the ICR model on Flickr
data will be presented in Sections 5 and 6.

4. TAG RECOMMENDATION
One application of tag statistics (in Sections 2.1 and 5.1)

is to serve as a similarity metric between different visual
concepts. Tag similarity is a prior information that can help
infer unknown picture tags that has too few or no training
data, and to regularize individual tag predictors. We draw
an analogy between photo tagging and collaborative recom-
mendation problems that simultaneously infer the prefer-
ences to a large number of different items. Latent space
models are effective choices for this purpose [24].

We denote each image as a feature vector xi ∈ Rn, and
each tag as tj , i = 1, . . . , n, j = 1, . . . ,m. Denote a tag
matrix as R ∈ Rn×m, each element rij ∈ {1,−1, 0} rep-
resent the label of a photo-tag pair (xi, tj). Here 1 means
tj describes xi, -1 means tj does not describe xi, and 0
means unknown. Predicting unknown entries in R is akin
to a recommendation problem [24], and one effective ap-
proach that takes into account item and tag features is the
MatchBox model [41]. It approximates R with two latent
factors: the photo factor U ∈ Rκ×p on the p-dimensional
photo features and the tag factor V ∈ Rκ×q on the q-
dimensional tag features. Denote the set of labeled photo-
tag pairs as L = {(i, j),where rij = ±1} and unlabeled pairs
are U = {(i, j),where rij = 0}. This problem is expressed
as a minimization problem for mean-square loss in R, regu-
larized by the norms of latent factors U and V,

JM =
1

2

∑
(i,j)∈L

(rij−xTi UTVyj)
2+

λ

2
(tr(UTU))+tr(VTV))

(10)
Here x and y are features describing pictures and tags re-
spectively, and λ and number of latent dimension κ are
hyper-parameters. Note that objective function J is non-
convex in U and V, but is convex (quadratic) in either U



or V if we hold the other fixed. We adopt an alternating
gradient descent [24] approach to find a local minima in J .
In short, we take derivatives of U and V in turn while hold-
ing the other constant. Then we apply gradient descent in
a round-robin fashion until a local minima is reached for
all parameters. This is implemented with an L-BFGS-B
solver [32] with gradients defined as follows [35]:

∂JM
∂U

= −
∑

(i,j)∈L

εijVyjx
T
i + λU (11)

∂JM
∂V

= −
∑

(i,j)∈L

εijUxiy
T
j + λV

Note that εij = rij − xTi U
TVyj is a shorthand for the cur-

rent error to predict rij . Also note that the computational
cost of the objective function and its derivatives is linear in
the number of labeled photo-tag pairs |L|, linear in the num-
ber of labeled images n and tags m, linear in feature dimen-
sions p and q, and quadratic in the (typically small) latent
dimension κ, i.e. O(|L|mnpqκ2). Compared to Wasabie [49],
our bilinear model incorporates additional tag features. We
currently use a square loss, on εij , we observed that hinge
loss performs comparably, and similarly, a ranking loss can
also be incorporated.

4.1 Photo Matchbox applications
This latent-space model of photos and tags has many

applications, this paper evaluates three: (A) “Collabo-
rative” tagging. Minimizing equation (10), and then use

R̂ = xTUTVy to predict entries for the unlabeled set U .
(B) Multi-tag photo labeling. This applies the Matchbox
model to a new photo x with no existing tags. The best
labels Rx for x is obtained by directly applying the pa-
rameters without needing to re-optimize for U and V , i.e.
R̂x = xTUTVY with the label estimate R̂x being a mul-
tiple linear combinations on feature x. (C) Inferring un-
known tags. This is the dual of problem (B) above, where

R̂y = xTUTVy for an unknown tag with feature y. Evalu-
ations of these applications can be found in Section 6.2.

Note that there are different choices in supplying the photo
and tag feature X and Y. X can include low-level percep-
tual features [12], bag-of-local descriptors [45], or mid-level
representations such as ObjectBank [27]. Y can include any
feature that describe a tag, in this paper, we consider the
synset-tag association matrix T, top m rows sorted by vi-
sual informativeness ξ. We also consider graph structures
from un-smoothing co-occurrence observations, as described
in Section 3.

5. DATASET AND OBSERVATIONS
We acquire and process ImageNet and ConceptNet datasets

as described in Section 2. Out of 14.2 million photos on Im-
ageNet, 6.3 million are from Flickr, and 5,107,147 photos (or
∼ 35%) have one or more tags that can be found in the dic-
tionary, as of March 2012. Out of all 21K+ synsets, 13,288
contain more than 5 tagged Flickr photos, and thus kept for
analysis. We map both Flickr tags and ConceptNet terms
using the 2+2lemma dictionary [4]. We disregard the multi-
word terms and any terms that did not match. We also
prune words that appeared less than 5 times in the entire
ImageNet/Flickr collection. This has left us a vocabulary of
20,366 words from Flickr tags, of which 7,796 also appears
in ConceptNet.

5.1 Observation on tags
We compute the visual informativeness measure ξ (Eq. 1)

from the co-ocurrence matrix of 13,288 synsets × 20,366
tags. These tags are visualized with its frequency |t| vs
visual informativeness ξt.

The middle overview graphs of Fig. 1 and the yellow back-
ground in Fig. 2 are scatter plots of all 20K+ tags, we can
see that there is a wide range of visual informativeness value
for tags of similar frequency. Fig. 1 (A) and (B) zoom in on
the overall scatter plot, as indicated by the overview icons,
showing the lower and upper envelope of the tag scatter, re-
spectively. For Fig. 1, in particular, the light blue tags con-
tain an annotated (partial) list of 194 food names (A), and
130 place names (B). These food and place names are col-
lected from the top tags across a few dozen food- and travel-
related Flickr groups, and then manually annotated by one
of the authors. Overall, the upper and lower regions of the
tagger scatter shows a clear trend of concrete, visual nouns
(2A, 1B) versus abstract and non-visual tags (2B, 1A). This
method for correlating a visual resource (ImageNet) with
generic tagging resource (Flickr) can be used to re-rank tags
in an image, or to decide which 1000 visual classifiers to
train (first) for better usability and performance.

5.2 Observation on tag pairs
We obtain bigram statistics B and RWR probability Z on

ConceptNet graph, as described in Section 2.2. There are
1,507,457 tag pairs that appeared in at least 5 images over
the ImageNet/Flickr collection, a scatter plot of b versus z
is in Fig 3 (left). There are three salient regions in this plot,
quantified by transforming the b − z plane to normalized
polar coordinates. We first normalize the two quantities to
be between 0 and 1: we take the log on bigram counts, and
then divided by the log of the maximum bigram to obtain b̃;
we divide z by the maximum of all z to obtain z̃. The polar
coordinate of a point (b, z) is:

ρ =

√
b̃2 + z̃2, θ = arctan(

z̃

b̃
).

Intuitively, we notice three salient regions according to dif-
ferent values of θ, marked as I, II, and III on Fig 3 (left). Top
tag-pairs of each region are shown on Fig 3 (right), obtained
as the top 20 pairs by descending values of ρ, within the an-
gles ranges specified according to θ. Region I (θ ∼ 45◦±7.5◦)
can be called concurrence, when we tend to observe high tag
co-ocurrence with high associations in ConceptNet. Exam-
ples in Fig 3 (right) shows intuitively related tags that are
also used to describe objects and scenes in photos, such as
sea and water, book and library. Region II (θ ∈ [0◦ ± 15◦])
can be called new visual relations, these tag-pairs frequently
co-occur in photos but are not strongly associated in Con-
ceptNet. The examples show intuitively related tags that
are also used to describe pictures, such as animal and na-
ture, flower and spring. Observations in these region can
potentially be used to generate new statements for semantic
networks including ConceptNet. Region III (θ ≥ 68◦, the
maximum θ is 72◦) can be called non-visual relations, these
tags are strongly associated in ConceptNet statements, but
do not frequently appear together in photos. Examples show
abstract words (e.g., duty, domicile) and as events rent and
house that are difficult to depict in a single image.

The joint examination of commonsense and photo tag co-
occurrence provides a number of interesting observations.
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Figure 1: Zoomed-in view of the tag scatter in Fig 2. (A) An area with non-informative tags, containing abstract

nouns, adjectives and place names; (B) An area with informative tags, mostly various object names. (For better

readability, please view in color and with magnification).

They can be starting points for composing a sentence to
describe photos, by providing a basis to include abstract and
non-visual tags with visual ones. On the other hand, this
analysis also exposes statistical biases in the data. Flickr
bigrams are certainly biased by the sheer frequency of a
tag, e.g. blue appeared many times in Figure 3, but other
colors did not. The number of ConceptNet4 tuples (450K)
is about an order of magnitude less than the Flickr bigrams
(>5M total, 1.5M with counts >5). The example in regions
II shows the prospect of better tag association from data.
This is one of our motivations for the ICR model – leveraging
Flickr as a source to infer the missing relationships in the
ConceptNet graph.

6. EXPERIMENTS
We first evaluate the ICR algorithm alone for inferring

concept relation graph, and then evaluate image tagging
with a number of different tasks and tag features.

For ConceptNet, we keep two versions of the relation graph
with 7,796 nodes: ConceptNet4 (CN4) has 450K total re-
lations and 51,576 relations after tag and relation filtering
(Sec 2); ConceptNet5 (CN5), released in 2012, has 69,120 re-

!"#$ !%#$

Figure 2: Scatter plot of log-frequency vs visual in-

formativeness ξ for the ImageNet-Flickr collection. (A)

Common food names against all tags; (B) Common place

names against all tags;

lations on the same set of tags (or 1/3 new relations, “CN5-
new” for short).

We measure image tagging performance on the NUS-WIDE
[43] dataset, containing 269K images collected from Flickr,
annotated with 81 visual tags, split 60-40 into training/testing
sets. This dataset is suitable for our evaluation, not only as
it is from the same source as the ImageNet-Flickr collection,
More importantly, it contains almost complete yes/no judg-
ment including negatives, most other datasets including Im-
ageNet only has positive examples, and provide no negative
judgement on picture-tag tuple. We download photos di-
rectly from Flickr with the provided URL, and then extract
an 177-dimensional ObjectBank feature from each image.
ObjectBank [27] produces for each object a response map
containing 2 views x 6 scales x 3 pyramid levels (1+22+44 =
21), and the responses for each object are aggregated by
taking the maximum. This vector is used to populate X
in MatchBox. We map the visual tags annotated by NUS-
WIDE [12] to ImageNet synsets using dictionary lookup on
all words in the synset. We removed a few that either has
no matches (e.g. sunset) or matched synset does not have
more than 50 photos. We also filtered a few tags that are
too generic for ImageNet (e.g. people, the top of a wordnet
tree with 2800+ synsets). We are left with 63 visual tags as
targets for MatchBox annotation.

6.1 Inverse Concept Rank Evaluation
We use the ICR algorithm to learn the underlying con-

cept graph, starting from CN4 and using bigram counts as
observations Z̄. The evaluation target are relations in CN5-
new, we note that these relations are incomplete (consistent
with partial labeling in typical IR evaluations), but they
are unknown to CN4 prior to model learning. We restrict
ICR to work within each synset, since this preserves the
particular relation context, and makes the algorithm exe-
cute fast – we note that ICR on different synsets can be
trivially pararellized, and each synset typically take a few
minutes on one CPU for ∼100 related tags from 100s to
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Figure 3: (Left) A scatter plot of Flickr bigram frequency b and ConceptNet pagerank z with three salient angular

regions. (Right) Top 20 tag-pairs of each region by ρ. See description in Sec 5.2, best viewed in color.

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Predicting New Relations in ConceptNet5

# synsets in ICR

av
er

ag
e 

pr
ec

is
io

n

 

 

ICR
bigram−min
bigram−max

W1	
   Top10	
  –W2	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
container	
   winery	
   alcohol	
   window	
   egg	
   head	
   lamp	
   table	
   oil	
   reflec4on	
   red	
  
cross	
   animal	
   temple	
   chapel	
   pray	
   decora4on	
   faith	
   band	
   crucifixion	
   red	
   white	
  
cut	
   work	
   meat	
   tree	
   hole	
   rip	
   small	
   surgery	
   band	
   red	
   reflec4on	
  
town	
   landmark	
   friend	
   rural	
   zoo	
   desert	
   field	
   bright	
   god	
   downtown	
   marina	
  
army	
   na4onal	
   weapon	
   jeep	
   infantry	
   big	
   glory	
   canon	
   pistol	
   museum	
   black	
  
business	
   man	
   travel	
   suit	
   hotel	
   small	
   retail	
   reflec4on	
   portrait	
   town	
   design	
  
corn	
   horse	
   cup	
   meal	
   fruit	
   carrot	
   soup	
   home	
   red	
   rural	
   holiday	
  
guard	
   military	
   fence	
   weapon	
   sentry	
   work	
   canon	
   black	
   police	
   orange	
   brick	
  
party	
   friend	
   night	
   play	
   fiesta	
   car	
   black	
   red	
   white	
   age	
   blue	
  
rest	
   vaca4on	
   new	
   home	
   smile	
   body	
   perch	
   park	
   black	
   travel	
   nature	
  

Rela4ons	
  not	
  in	
  Concept5	
  Rela4ons	
  in	
  both	
  ICR-­‐400	
  and	
  ICR-­‐50	
   Rela4ons	
  in	
  ICR-­‐400	
  and	
  not	
  in	
  ICR-­‐50	
  

Figure 4: Result of ICR on ILSVRC synsets. (Left) AP of new CN5 relations with varying number of input synsets.

(Right) Example top relations from ICR. See descriptions in Sec 6.1, best viewed in color.

1000s photos. We use 1000 synsets from ILSVRC [1] in
this evaluation, of which 462 synsets have sufficient data in
the ImageNet/Flickr dataset. The graph G from different
synsets are then dimension-aligned and aggregated by sum-
ming the weights. Hyper-parameters α = 0.5, αR = 10, set
with cross-validation.

Fig. 4(left) plots average precision of CN5-new relations
after aggregating ICR on 25,50,. . . , 462 synsets. The er-
ror bars are generated with 10 random permutations with
which the synsets are aggregated. We can see that ICR pro-
duces successively better predictions of CN5-new, and its
predictions are significantly better than the best of using
bigrams (the green baseline). Fig. 4(right) contains 10 ex-
ample words (W1) and their respective top 10 related words
ranked by ICR with 50 and 400 synsets (ICR-50 and ICR-
400 for short). We can see that ICR-400 recovers many
correct relations (red) in addition to those from ICR-50
(burgundy). We note that the learned relations can be: a)
in ground-truth and reasonable (army-weapon), b) not in
ground-truth but can be potential additions to ConceptNet
(rest-park), c) specific to photography (container-reflection),
and d) in ground-truth but no strong immediately connec-
tion party-car), due to noise in ConceptNet. Among the 333
words that have at least 10 relations in CN5-new and ICR-
50, 52.5% and 76.9% have precision@10 ≥ 0.5 on ICR-50
and ICR-400, respectively.

6.2 Picture Tagging Evaluation
We use the wordnet-tag association matrix as tag feature

Y. We rank the tag-feature dimensions by the informative
measure ξt, and take a subset of these dimensions from the
top, i.e. with a threshold on the y-axis in Fig. 2. We opti-
mize the objective function in Eq. 10. Positive entries of rij
are kept, negative entries are subsampled up to 8x number
of positive samples for each tag, the rest are treated as the
unknown set U . We use cross-validation to choose regular-
ization weight λ, the number of latent dimensions κ, and the
dimensionality of tag features q. Each of these parameters
are shown to be performance-insensitive within a range, we
also found hinge loss and square loss to perform similarly.
We report results with square loss and the best configura-
tion λ = 100, κ = 5 and q = 150. Training and testing on
the entire NUS-WIDE dataset takes 2∼3 hours on one CPU
core. Details of model parameter tuning can be found in the
supplemental material [2].

Fig. 5 compares MatchBox model to a number of baseline
approachches. Fig. 5(A) reports micro- average precision
where each (image, tag) pair r̂ij is considered as a retrieval
target; (B) reports macro AP (or mAP), mean average pre-
cision over different tags; (C) measures tag recommendation
performance with precision @ 5 tags, for 1000 randomly se-
lected test images with ≥5 tags. KNN and SVM are the
visual-only results reported for NUS-WIDE [43], mAP of
SVM classifier is shown to be below 0.06 and on par with
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Figure 5: Image annotation results on NUS-WIDE dataset.

KNN. We can see that the bilinear matchbox model with
tag features significantly outperforms the k-nearest neighbor
(KNN) baseline and SVM reported earlier [43]. Matchbox
with co-occurrence tag feature Y also outperforms the same
bilinear model with identity features (Y = I) that do not
share information across different tags.

6.2.1 Tagging with unseen tags
To evaluate the role of tag feature Y as a prior for tag-

space similarity, we test the MatchBox model on new tags
without training instances. This is similar to novel word
recognition presented by Mitchell et al. [31], here we gener-
alize using image features and tag usage, rather than using
brain signals. Fig. 6 (A) reports annotation performance of
the 20 most frequent tags without training data. We re-
move all positive instances of the tag from training set L,
and optimizes the same MatchBox objective. This model
rely solely on Y to generalize across tags. We can see that
the performance without training on the current tag are on
average almost as good as those with training data, some-
times even better, such as clouds and animal. We also try
to quantify the effects of tag features alone, and found that
simple voting from the top-3 similar tags (T/1-voting) has
comparable performance as those using feature similarities
in Y (T/1). Fig. 6 (B) shows the top returned results for
a number of free-text tags that are not in the NUS-WIDE
labeled tag set. We can see that the top images of travel re-
flects two primary means of traveling: cars and bicycle; blue
captures the color appearance of water and sky, and archi-
tecture is closet to learned tags buildings, tower, and temple.
These results show that tag features indeed help generalize
new, untrained tags in non-trivial ways.

6.2.2 ICR for tagging
We use the output of ICR for photo tagging. We start

ICR on 93 synsets that directly map to, or mentions the
NUS-WIDE tags in its name from CN5 to obtain a more
complete graph estimate. We aggregate the set of resulting
subgraphs Ĝi over different synsets si by taking the max
across elements indexed by the same tag-pair, generating
Ĝ = {ĝuv}, where ĝuv = maxi{ĝiuv}. We then take elements

of Ĝ to the same row- and column-dimensions of the original
tag feature Y, denoted as ĜY. We use the sum of Y and
ĜY as the tag feature for MatchBox.

Figure 7 shows the mAP (macro average) for all 63 and
the least frequent 43 tags. cooc is the original synset-tag
co-occurrence feature (top bar in Fig. 5), cn5 is using Con-

ceptNet5 as-is for GY, and icr5 uses ĜY after ICR. We
can see that the adding unsmoothed tag relations from ei-
ther cn5 or icr5 improves performance, and icr5 further im-
proves upon cn5. We also note that despite a small different
mAP value, the improvement of icr5 from cooc is statisti-
cally significant. Moreover, the relative improvement on the

43 rare tags (mAP-bottom43, 7.3%) is more than that across
all tags (mAP-all, 3.6%). Further improvement can be ex-
pected when the target tag space is larger, and we leave this
to future explorations.

7. RELATED WORK
A number of different research topics are related to our

work, including understanding social tags, connecting words
to pictures, picture tagging with multiple input modality
and tag structure, multimedia knowledge sources, and net-
work inference.

The recent rise of social tagging has elicited much research
curiosity. Ames et al. [3] conduct surveys to understand
motivation for user tagging on Flickr; Sigurbjornsson and
Zwol [40] studies overall Flickr tag statistics; Bischoff et
al. [9] classifies social tags into a few distinct categories,
and Overellet al. [34] uses wikipedia for tag classification.
A number of other work focus on the analyzing and recog-
nizing specialized social tags, such as landmarks[23], events
and places [39], or location names and proper nouns [48].
Weinberger and Slaney [48] propose a scalable approach to
identify tags with ambiguous word senses, and suggest co-
ocurring tags to disambiguate among its multiple meanings.
All of these work provides useful insights and techniques for
analyzing Flickr data, however none has profiled the use of
everyday words as tags.

There are many methods for generating tags from visual
and word input. Nearest-neighbor methods have been pop-
ular for large amounts of training data, photo tagging meth-
ods have relied on voting with photo metadata [40], or voting
from neighbors in visual feature space and then aggregate
their flickr tags [28]. Quelhas et al.[38] uses latent semantic
analysis to extract visual scene patterns; Wang et al. [46] use
bag-of-keypoints to illustrate a tag; Liu et al. [29], Tang et
al. [43] and Qi et al. [37] design several algorithms for propa-
gating picture tags from both visual content and noisy text.
There has been competing approaches for learning multiple
tags simultaneously, including full-connected graphical mod-
els [36], tree-structured graphical models derived from co-
ocurrence data [11], pre-defined lexical hierarchies [14], co-
ocurrence and colocations [30], Object Relation Network [10]
for representing the most probable meaning of the objects
and their relations in an image, and bilinear large-scale an-
notation model with approximate-rank loss called Wasa-
bie [49]. A key differentiation of our work is two ways of
representing prior knowledge, and a method to incorporate
them as tag features for learning. Our proposed method is
built upon recent developments in matrix factorization and
social collaborative filtering [24, 41], while the particular ap-
plication in image tagging is new.

Another related topic is to quantify the correspondence of
visual elements and their descriptions. This include a “vi-
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Figure 6: Annotation for unseen tags. (A) AP and mAP for the most frequent 20 NUS-WIDE tags with or without

training instances (T/1), and nearest-neighbor voting in tag feature space (T/1-voting). (B) Top 5 returned images

for freetext tags not in the NUS-WIDE set. See discussion in Sec 6.2.1.

sualness” measure via image region entropy [50], with both
entropy and purity measures [22], determining representa-
tive web images [47], or a method to correlate visual and
semantic similarities on ImageNet [15]. Recently the Stony
Brook and UMD team worked on a complementary pair of
problems: to predict the likelihood that a visual object is
described in natural language from its properties (such as
category, size and position) [8], and to detect which word(s)
in a natural sentence has visual correspondence in the im-
age that it is describing [16]. Compared to these interesting
studies, our work quantifies the visual informativeness of a
word by examining correlations in tagged collections alone,
and do not rely on visual analysis on individual images.

Our work in mapping tag relations is inspired by research
on representing real-world knowledge from web and multi-
media sources. Several well-known visual ontologies have
been manually designed by experts and covers a few dozen
to a few hundred nodes [33]. Recently, ImageNet [13] uses
images to illustrate a well-known language ontology Word-
Net [17], which contains tens of thousands of nodes, and
has took over a decade to construct by a team of linguis-
tic experts. Real-world knowledge databases has enlisted
help from the general online crowd, YAGO and DBPedia [5,
42] are built upon Wikipedia, and ConceptNet [21] consist
of crowd-sourced statements from a website over a number
of years. This work can complement some of these large
ontologies by providing statistical information about how
words and word-to-word relations are grounded in images
and used to describe images.

Inferring an underlying network from observed statistics
is an interesting problem recently starting to receive more
attention. The NetInf algorithm [19] estimates a directed
network from observed diffusion traces, the supervised ran-
dom walk [6] model learns a regressor on network parame-
ters based on nodes reached by random walks. Our problem
differs from the above as it estimates graph weights given
aggregate stationary distribution statistics, not traces. This
can be seen as the inverse of the well-known page-rank prob-
lem [26]. To the best of our knowledge, no solution to this
problem exists.

8. CONCLUSIONS
We propose novel methods to analyze photo tags and

tag relationships, using data from Flickr, ImageNet and
ConceptNet. A novel network inference algorithm, ICR,
is designed to estimate latent relationships from tag co-
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Figure 7: mAP for all and the least frequent 43 tags,

with or without ConceptNet and ICR features. Note

that the improvement from Co-occurence to ICR feature

is statistically significant (p=0.008 from a paired t-test).

ocurrence. We obtain tag statistics on thousands of tags
from millions of images. This allows us design an efficient
tagging algorithm to simultaneously model many tags with
image- and tag- features. The proposed tagging algorithm
generalizes to unseen tags, and is further improved upon
incorporating tag-relation features obtained via ICR. Core
novel aspects of our work are in quantifying visual tag use
and tag relations from social statistics, algorithms for net-
work inference from aggregated occurrences, and using these
insights for large-scale picture tagging.

The limitations of this work point to several directions
for improvement and future work, such as: techniques to
better incorporate multi-word terms and out-of-vocabulary
words; advanced NLP techniques for learning word relations
from free-form text; evaluation of latent concept relation
suggestion, and predicting the type of relations.
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