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ABSTRACT

This paper presents a simple but effective model for detecting
the symmetric axes of bilaterally symmetric objects in unseg-
mented natural scene images. Our model constructs a directed
graph of symmetry interaction. Every node in the graph rep-
resents a matched pair of features, and every directed edge
represents the interaction between nodes. The bilateral sym-
metry detection problem is then formulated as finding the star
subgraph with maximal weight. The star structure ensures
the consistency between grouped nodes while the optimal star
subgraph can be found in polynomial time. Our model makes
prediction based on contour cue: each node in the graph rep-
resents a pair of edge segments. Compared with the Loy and
Eklundh’s method which used SIFT feature, our model can
often produce better results for the images containing limited
texture. This advantage is demonstrated on two natural scene
image sets.
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1. INTRODUCTION

Bilaterally symmetric objects are abundant in the world, such
as faces, leafs and architectures. Due to their importance to
daily life, human vision system has adapted well to detect
symmetrical patterns. Perception of symmetry can influence
many aspects of the scene perception, such as figure-ground
segmentation [1][2].

Our model focuses on estimation of symmetric axes of ob-
jects. Among all the possible axes, our model aims to assign
the true symmetric axes higher ranks. A key issue of symme-
try detection is the diversity of objects. There are symmet-
ric objects in different categories, having different shapes and
texture. In order to accommodate various objects, our model
needs to be flexible in two aspects. First, the model should use
symmetry cues which are available in most of natural images.
Second, the model should not be limited to any special kind
of symmetric objects. For example, [3] is based on statistics
of symmetric parts, and is not suitable for detection of large
symmetric objects.

To meet these challenges, each symmetric object is mod-
eled as a star-shaped graph connecting symmetric object
parts. Each symmetric part is a pair of edgelets which are
extracted from the object’s contour. The contour information

is ubiquitous in natural images and often leads to accurate
estimation of the symmetric axes. Therefore, using contour
information makes our model applicable to various images.
In addition, all the symmetric pairs of edgelets are required to
form a star graph. The star structure encodes the assumption
that the symmetric axes of object parts will not deviate much
from that of the whole object. Since this assumption is valid
for general bilaterally symmetric objects (excluding those
with curved symmetric axes), our model is not restricted to
any special kind of symmetric objects.

Our model is compared with Loy and Eklundh’s method
[4]. Despite being an early work, this method is still the state
of the art bottom-up grouping algorithm, according to the lat-
est systematic evaluation [5]. The experiments show that our
model achieves a better performance on two test datasets con-
sisting of various natural scene images. The advantage comes
from images containing abundant contour cue but scarce tex-
ture cue. These results justify the use of contour informa-
tion. Our model can contribute to vision processes such as
visual saliency [6] and symmetry-based segmentation meth-
ods [7][8][9].

1.1. Related Work

Our method belongs to the grouping-based symmetry detec-
tion method [4] [10] [11]. For example, [11] detects the me-
dial axis of symmetric shape by finding the most salient tree
subgraph in the affinity graph. To better enforce the geomet-
ric consistency between the elements, our method tries to find
the optimal star-subgraph instead.

Like our work, many symmetry detection models are also
based on contour information [12][13][14]. In particular, our
model is close to [14] in which pairs of edgelets are also
grouped into clusters based on pairwise geometric relation-
ship. However, their method committed to a lot of hard deci-
sions, in order to restrict the number of elements and pairwise
connections, to the effect that large symmetric patterns can-
not be detected. More recently, symmetric edge trapezoids
are grouped into symmetric closed contours [13]. Different
from their model, our method does not require the symmetric
edgelets to form closed contour.



2. GRAPH OF CONTEXTUAL INTERACTION

2.1. Method Overview

A sample input image is shown in the top left of Figure 1,
it has a salient symmetric axis in the middle. A number of
isosceles trapezoids [13] are extracted from pairs of edge seg-
ments as grouping elements. Then, a directed graph of con-
textual interaction is build. Each symmetric element (trape-
zoid) is represented by a node in the graph. Each node’s
preferred symmetric axis is the angle bisector of the legs of
the trapezoid. A symmetric object usually consists of more
than one element. Due to the principle of non-accidentalness,
two elements will enhance each other if their symmetric axes
are collinear. The contextual interaction of these elements is
modeled by pairwise directed edges between the nodes (bot-
tom left of Figure 1). Finally, the image’s symmetric axis is
detected by finding the most salient subgraph, shown in the
bottom right figure.

Fig. 1. Illustration of our method. Top left: The line drawing
image of a face. The dashed line is the salient symmetric axis
human perceive. Top right: Five pairs of edgelets support-
ing the perceived symmetric axis. Bottom left: The graph of
contextual interaction. Every colored node corresponds to the
edge pair in same color in top right figure. The rest of edge
pairs are denoted as the big gray node for clarity. The edges
encodes mutual enhancement of symmetric saliency. Bottom
right: The star subgraph our model extracts.

2.2. Symmetric Element Extraction

In our model, symmetric elements are trapezoids made of line
segment pairs. The local edge detector Pb [15] is applied to
the input image to obtain a soft contour image, in which the
intensity of each pixel is its probability of being a true contour
point. After thresholding, the line-fitting algorithm is used to
extract a set of line segments from the binary edge image [16].
The probability of each line segment is computed as the aver-
aged Pb value of the associated points. Next, a trapezoid is ex-
tracted from two line segments by projecting line segments to
the angle-bisector line and removing the non-overlapping seg-
ments, as detailed in [13]. The symmetric axis of a trapezoid

is the angle-bisector line between these two line segments un-
der the assumption of Euclidean transformation. The weight
of a trapezoid wi is:

wi = (Pbi1Pbi2)
1
2

(
NCCi + 1

2

)2

(1)

where Pbi1 and Pbi2 denote the Pb value of two line seg-
ments respectively, and NCCi denotes the normalized cross
correlation of the left and flipped right half of gray scale im-
age in the trapezoid. Using region information would reduce
the weights of false matches. In sum, Eq 1 assigns higher
weights to trapezoids formed by symmetric region and salient
contour.

2.3. Linking the Nodes with Directed Edges

Our model adds two directed edges between a pair of nodes
if their symmetric axes are close enough. The weight of the
directed edge eij reflects how much the trapezoid i could en-
hance the symmetric saliency induced by the trapezoid j. It is
designed as follows:

wij = wigij (2)

where gij reflects their geometric consistency and has a value
between zero and one. This equation says the strength of en-
hancement is proportional to the saliency of node i, and is
modulated by their geometric relationship, which is in turn
defined as:

gij = cos(∆θij) exp

(
−dij
σ1

)
exp

(
− dij
σ2mi

)
(3)

where ∆θij is the angle between the symmetric axes of node
i and node j. The dij denotes the distance of the center of
trapezoid i to the symmetric axis j. The mi is the length of
the midline of trapezoid i. The parameters σ1 and σ2 controls
the amount of penalty. The first term cos(∆θij) penalizes the
difference in the angles of two axes. The second term pe-
nalizes the misalignment of two symmetric axes. The third
term penalizes the ratio of the misalignment to the length of
the midline of trapezoid i. These three terms capture the in-
tuition that mutual enhancement is stronger when two trape-
zoids shares the same symmetric axis.

3. SYMMETRIC OBJECTS AS STAR SUBGRAPHS

Our model assumes that each symmetric object consists of a
set of symmetric elements i.e. trapezoids. We further assume
that these elements are grouped together because they all add
up to the saliency of a central element. Therefore, a salient
symmetric object shall be represented as a start subgraph in
the graph of contextual interaction. The star subgraph is cho-
sen over subgraphs of other topologies, e.g. a chain or a tree
subgraph for two reasons [11][17]. First, the topology of star



subgraph ensures that all the leaf nodes’ preferred symmet-
ric axes are close to that of the central node, thus ensuring
the consistency of all object parts. However, the nodes at two
ends of a chain or tree graph may prefer very different axes
if there are enough nodes in between to form a smooth tran-
sition. Second, finding a star subgraph leads to a much sim-
pler optimization problem which can be solved in polynomial
time. To find salient symmetric objects, we need to find star
subgraph with maximal weight. In our model, the weight of
the subgraph is defined as the sum of the weight of the central
node and those of the incoming directed edges.

The inference problem is solved by enumerating all the
star-subgraphs with different centers. For each node, our al-
gorithm calculates the sum of all the weights of incoming
edges larger than the threshold. The result is the maximal
weight of any star graph centered on this node. In order to
find the global maximum, it is necessary to enumerate all the
nodes as the center of the star graph. Therefore the complex-
ity of our method is o(N2), where N is the number of nodes.
To save runtime, our model only considers nodes with weights
larger than a threshold as the center.

3.1. Extracting Multiple Symmetric Axes

To extract multiple symmetric axes in one image, our model
relies on the prior that the weight of any star subgraph repre-
senting an object should be a local maximum in the Hough
space which is the parametric space for all symmetry axes
[18]. Therefore, each salient star subgraph is first projected
to a point in the Hough space. Its coordinates in Hough
space are the parameters of the preferred symmetric axis. The
weight of the point is just the weight of subgraph. Based on
this prior, some candidate points are extracted in this Hough
space by finding the local maxima. This non-maximum sup-
pression operation eliminates false-positive subgraphs which
share nodes with the true positives. Finally, the candidate
axes are sorted by their weights at the final output.

4. EXPERIMENTS

4.1. Evaluation Method and Implementation Details

A groundtruth symmetric axis in the dataset is represented by
two endpoints of a line segment. Each detected axis is repre-
sented as a line. A detected axis is considered as a true posi-
tive if the angle between itself and the groundtruth axis is less
than 10 degree and the distance from either endpoint to the
detected axis is less than 20 pixels. The recall and precision
rates are computed when the number of output axes per image
varies between 1 and 20. The recall rate is defined as the ratio
of true positives over the number of all groundtruth axes. The
precision is defined as the percentage of true positives over
the number of detection. Together, these two curves faithfully
reflect a method’s ability to rank the hypotheses, and are free
from the interference of choice of threshold.

Fig. 2. Some results on synthetic images. The first column
shows the test images, the second column shows the Pb de-
tection. Rest of the columns show three most salient axes
detected by our model. The first three axes are shown in red,
yellow, green respectively. The matched edgelets with large
weights are linked by the thin blue lines. Best seen on screen.

The Pb threshold is 0.05. In Eq 3, we set σ1 = 20, σ2 =
0.125. To find local maxima in the Hough space, we chose
a window which spans d/20 pixels, and 40 degrees, where
d stands for the length of diagonal axis of image. To reduce
noise, edges whose weights are less than 2 are removed.

4.2. Experiments on Synthetic Images

First of all, our model is tested on the synthetic images. Syn-
thetic images usually have clear contour and accurate sym-
metry correspondence. They are suitable for testing whether
our model can find the symmetric axes for almost ideal input.
Some sample images and the most salient three axes detected
by our model are shown in Figure 2. This figure also displays
the matched edgelets whose weights are larger than a thresh-
old. We can see that the detection results are accurate.

4.3. Comparison on PSU Dataset

The first dataset is part of PSU dataset with the groundtruth1.
There are 51 images with 74 symmetric axes in total. The re-
call and precision curves of both models on PSU dataset are
shown in the left part of Figure 3. These curves show that
our model has a higher or compatible performance in a large
area. Figure 4 shows first three detected symmetric axes by
our model for some images. Figure 5 compares some detec-
tion results by both methods. For the image in the first row,
our model’s output is better than Loy and Eklundh’s because
there is hardly any symmetric texture in this image. For the
image in the second row, both model detect the axes of two
bottles. The difference is that our model relies on the bottle
outlines, and their results are inferred mainly from the tex-
ture on the bottles. For the image on the third row, Loy and
Eklundh’s algorithm’s output is better, due to abundance of
texture and scarcity of contour. Since two models critically
depend on the availability of texture and contour cues, the
question that which model is on average better depends on

1http://vision.cse.psu.edu/research/symComp12/index.shtml



the comparison of the two cues for symmetry detection task.
Clearly, this question cannot be answered without much more
extensive test. However, our experiments demonstrate that the
contour can provide very rich symmetry information which
may not be available from texture.
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Fig. 3. Top left: The recall rates of our model and Loy and
Eklundh’s method (LE for short) as a function of the number
of output axes per image on PSU dataset. Top right: the re-
call rates on BSDS dataset. Bottom left: The precision curves
on PSU dataset. Bottom right: The precision curves on the
BSDS dataset. Best seen on screen.

Fig. 4. Our model’s outputs for PSU dataset images. Three
most salient axes (in order of red, yellow, green) are shown.

4.4. Comparison on BSDS Dataset

Next, we evaluate both models on BSDS300 dataset [15]
which contains exemplary urban and nature scene images.
We find 48 out of 300 images have salient bilaterally sym-
metric objects. The symmetric axes of these images are hand-
labeled. The recall and precision curves for both methods are
shown in the right half of Figure 3. It shows that our model
has compatible or slightly higher performance in most of the
region. The performance of both models drops for BSDS
dataset, suggesting that these images are more challenging.
Comparing with [4], the trend in PSU dataset continues in

Fig. 5. Comparison with Loy and Eklundh’s model [4] on
PSU dataset. The first three columns show the most salient
axes our model detects and the last column shows the results
by [4]. Our model does a better job on the spoon image in
the first row, and [4] is better for the bear image in the last
row. Both models correctly detect the axes in the second row
image, but drawing on different cues. Best seen on screen.

the BSDS dataset. In Figure 6 our model produces better
results for objects with long and clear outlines or markings.

Fig. 6. Some images in BSDS dataset where our model pro-
duces better results. The first row is the results of LE method,
and the second row shows our results.

5. CONCLUSION

This paper proposes a bottom-up symmetry detection model
based on grouping pairs of contour fragments. The contex-
tual interactions of symmetric edgelets are represented as a
directed graph. Then salient symmetric objects are extracted
as the star-shaped subgraphs with maximal weights. Com-
pared with the SIFT-based method [4], our model is advan-
tageous for images with scarce texture cue but clear contour.
Our model can be used for applications such as symmetry-
based segmentation and saliency detection.
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