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Abstract—Face alignment has been well studied in recent
years, however, when a face alignment model is applied on facial
images with heavy partial occlusion, the performance deteriorates
significantly. In this paper, instead of training an occlusion-
aware model with visibility annotation, we address this issue
via a model adaptation scheme that uses the result of a local
regression forest (RF) voting method. In the proposed scheme,
the consistency of the votes of the local RF in each of several
oversegmented regions is used to determine the reliability of
predicting the location of the facial landmarks. The latter is
what we call regional predictive power (RPP). Subsequently,
we adapt a holistic voting method (cascaded pose regression
based on random ferns) by putting weights on the votes of
each fern according to the RPP of the regions used in the fern
tests. The proposed method shows superior performance over
existing face alignment models in the most challenging data sets
(COFW and 300-W). Moreover, it can also estimate with high
accuracy (72.4% overlap ratio) which image areas belong to the
face or nonface objects, on the heavily occluded images of the
COFW data set, without explicit occlusion modeling.

Index Terms—Face alignment, occlusion, random forest,
cascaded pose regression, model adaptation.

I. INTRODUCTION

ACE alignment, or in other words the localization of

a set of facial landmarks, such as the center of the
pupils or the tip of the nose in a face image, is a well
studied topic in the computer vision literature. The interest in
automatic localization of the landmarks lies in many important
applications such as face recognition, facial animation and
facial expression understanding. In recent years, significant
progress has been made in this task and several works
have reported very good results on datasets collected in the
wild [8], [34]. Nevertheless, most of the face image datasets do

Manuscript received July 11, 2014; revised October 28, 2014,
January 15, 2015, and March 24, 2015; accepted March 30, 2015. Date
of publication April 10, 2015; date of current version April 29, 2015. This
work was supported by the European Integrating Project REVERIE under
Grant FP-287723. The work of H. Yang was supported by a China Scholar
Council Scholarship. The work of X. He was supported in part by the
Australian Government through the Department of Communications and in
part by the Australian Research Council through the ICT Centre of Excellence
Program. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Stefano Tubaro.

H. Yang and I. Patras are with the Queen Mary University of London,
London E1 4NS, U.K. (e-mail: heng.yang@qmul.ac.uk; i.patras@qmul.ac.uk).

X. He is with National ICT Australia (NICTA) and Australian National Uni-
versity, Canberra, ACT 0200, Australia (e-mail: xuming.he@nicta.com.au).

X. Jia is with The University of Hong Kong, Hong Kong (e-mail:
xhjia@cs.hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TTP.2015.2421438

not have significant occlusions, for example, the widely used
Labelled Facial Parts in the Wild (LFPW) dataset [6] has an
average of 2% occlusion. Face images in real scene, such as the
ones in the recently created COFW dataset [7], are often more
challenging. These methods performed significantly worse
when applied on such images with heavy occlusion since
their models cannot handle missing features due to occlusion.
Despite the fact that face images in real world are frequently
occluded by objects like sunglasses, hair, hands, scarf and
other unpredictable items, as shown in Fig. 1, very few works
have studied face alignment under occlusion explicitly.

Tackling the occlusion problem explicitly is difficult mainly

due to two reasons. First, compared to the intra-category shape
variation of face, the occluders' are much more diverse in
appearance and shape. They can appear on the face in almost
unpredictable arbitrary position with various sizes. Second, it
is a chicken and egg problem since that occluders should
not participate in the alignment but it is difficult to tell
whether a landmark is occluded unless the correct alignment
is known [26]. Therefore, most of the existing works only
considered the occlusion status of individual landmarks and
treated the occlusion landmark as unstructured sources of
noise. In addition, they require the annotation of occlusion
during training, either annotated manually [7] or synthesized
artificially [18]. These approaches show some success but have
a series of drawbacks:

« Treating the occlusion status of individual landmark inde-
pendently ignores a key aspect that the occluders are
often other objects or surfaces and hence often appear
in continuous regions instead of an isolated pixel.

o The randomly synthesized occlusion patterns are not
realistic enough to describe the occlusion diversity in
real scenes. To collect face images with occlusions and
to annotate their occlusion status is expensive, especially
when a large number of such images are demanded for
model training.

o The occlusion detection at pixel level limits its practical
application in face analysis since features are usually
extracted from a region rather than an individual pixel.

The method presented in this paper aims to deal with face
alignment under occlusion and overcome the above mentioned
drawbacks. An overview of our method is shown in Fig. 1.
Given a face image, our method starts from a detected face and

n this paper the objects that occlude the face are called occluders and the
visible face region is called face mask.
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lustration of the pipeline of the proposed method. Given a test image, we first detect the face and apply segmentation by the graph-based approach

in [16]. Based on the face bounding box information and the segmentation result, we employ the local patch based Regression Forest voting method for face
alignment and obtain the Regional Predictive Power map with pixel probability from a to 1. We then adapt the state of the art face alignment model, (Robust
Cascade Pose Regression (RCPR) is used as an example) by putting weights on different weak regressors. The final column shows the results from original
RCPR (upper) and the adapted RCPR (lower). Our method is able to localize the landmarks more accurately (especially when occlusion is presented) and
reason the occlusion labels of the landmarks (2I€€1 = unoccluded, red = occluded).

employs an over-segmentation method to partition the image
into non-overlapping regions. Then a local regression forest
voting based facial feature detection approach is adapted to
predict the power of each region affiliated to the face bounding
box. We call this the Regional Predictive Power (RPP) and
is essentially a measure of how useful information from a
certain region can be for the task of face alignment. The
output of this step is a dense RPP map that also indicates
the probability of each region belonging to the face. This RPP
map is then used along with the original face image for final
face alignment using an adapted Cascaded Pose Regression
methods. In summary, we make the following contributions in
this work:

« We reason about the face mask (occlusion), represented
by the RPP map, in an unsupervised manner, i.e., we do
not use any occlusion annotation or synthesize occlusion
patterns for model training but rely on the consistency
of the local Regression Forest (RF) voting, that is
the RF model is pre-trained for general facial feature
detection. It follows a patch-based Hough voting scheme,
such as [13], [38]. The occlusion prediction is at regional
level and it holds two important properties that differenti-
ate it from the previous works: first, it is dense, i.e., each
pixel inside the face bounding box has a probability that
indicates its confidence level of belonging to the face;
second, it is structured, since the structure of both the
face region and the occlusion pattern is naturally kept
via the over-segmentation process.

« We adapt the recent face alignment model by taking
the RPP map into account and make it more robust
to partial occlusion. The core idea is that we use the
occluded or erroneous features in the alignment process
in a different way. The adaptation is made only during
the testing stage, i.e., the model we are going to adapt is

pre-trained and no additional annotation or re-training is
required. We test this adaptation scheme on the state of
the art face alignment approach, i.e., the Cascaded Pose
Regression (CPR) and show clear improvement.

« We propose an initialization scheme that derived from the
local RF detection, which improves the robustness to the
face bounding box shift from training to testing stage.

« We extend the COFW dataset by manually annotating
the face mask for each image, which can be used for
evaluation of face mask prediction for further research.

We evaluate the proposed method on two most challenging
datasets, namely, COFW dataset [7] and the 300-W benchmark
dataset [27]. We show better or comparable results when
comparing with the state of the art methods in the problem
of face alignment in both datasets. Moreover we also show
that we can estimate with high accuracy which image areas
belong to the face and which not - on the heavily occluded
images of the COFW dataset the overlap ratio is 72.4%.

The remainder of the this paper is organized as follows:
In Section 2, we briefly review the existing facial feature
detection techniques related to our work. In Section 3,
we first describe the Regression Forest based Regional
Predictive Power estimation scheme and then present how
we use the RPP map to improve the robustness of the face
alignment method to occlusion. In Section 4, we show the
experimental results of our proposed method on different face
alignment ‘in the wild’ databases. We close with concluding
remarks in Section 5.

II. RELATED WORK

Two different sources of information are typically used for
face alignment: face appearance (i.e., texture) and shape infor-
mation. Based on how the spatial shape information is used
we categorize the methods into local-based deformable model
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methods and holistic pose regression methods. The methods in
the former category usually rely on discriminative local detec-
tion and use explicit deformable shape models to regularize
the local outputs. The methods in the latter category directly
regress the pose (locations of a set of landmarks) in a holistic
way. We first briefly review face alignment methods in these
two categories, and then discuss the issue of partial occlusion.

Local based deformable models usually need to train a
discriminative local detector for each facial landmark. Many
classification and regression methods are utilized in this frame-
work, e.g. the Support Vector Machines (SVM) in [6] and [23]
and Support Vector Regression in [20]. Recently Regression
Forests (RF) [10], [13], [36], [37] were also used where
the location of facial point is estimated by accumulating
votes from nearby regions. Smith ez al. [29] also follows a
voting scheme based on exemplar images retrieval. Different
types of image features are used, e.g., Gabor feature [33],
SIFT [6], HoG [46] and the multichannel correlation filter
responses [17]. Although some methods make no use of
the shape information [13], it is common to combine the
local detection with shape models since only a few facial
landmarks are very discriminative and typically there exist
multiple candidates for the location of one landmark. This can
be done by using a shape model to either restrict the search
region (see [20]), or by correcting the estimates obtained
during the local search. Typical shape models include the
Constrained Local Model (CLM) [3], [5], [10], [12], [28],
the tree-structured model [18], [41], [44], [46]. Other opti-
mization search methods are also applied to search for the
best combination of the multiple local candidates, e.g. the
RANSAC [6], [29], Branch & Bound [1], graph matching [45]
and regression forest votes fine-tuning [38], [39]. Local based
methods struggle under occlusion since the local detector is
intrinsically sensitive to noise. Also when the number of the
face landmarks increases, their efficiency for both training and
testing drops sharply since the local detection is carried out
for each landmark separately.

Holistic pose regression methods regard the pose as a
whole and often align the shape in an iterative or cascaded
way. A typical method in this category is the Active
Appearance Model (AAM) [9]. At each iteration of the
AAM fitting, an update of the current model parame-
ters is estimated via a simple linear regression method.
In this framework, better optimizations are proposed
in [28], [31], [32], and [34]. Noticeable progress in iterative
holistic shape alignment has been made in recent years
in the framework of Cascaded Pose Regression (CPR) for
instance [8], [14], [15] and face sketch alignment [40]. Those
methods directly learn a structural regression function to
infer the whole facial shape (i.e., the location of the facial
landmarks) from the image and explicitly minimize the
alignment errors in the training data. The primitive ran-
dom fern regressor at each iteration employs shape indexed
features as input. Recent iterative approaches include the work
by Xiong and De la Torre [34] based on SIFT features,
convolutional neural networks [30], the incremental cascaded
linear regression [4] and the Local Binary Feature learning
based cascaded method [25]. Most of the iterative methods in
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this category depend on the initialization that derived from
the face bounding box. When the face detector changes,
the performance usually drops sharply. Current CPR based
methods like [7], [8], [14] attempt to deal with this issue by
initializing the method with several shapes and then by select-
ing the median value of the outputs. Burgos-Artizzu et al. [7]
proposes a smart restart scheme to improve the robustness to
random initialization.

Partial Occlusion in face alignment has drawn very little
attention. Local based methods have problem when heavy
occlusion is presented because the local detector is inher-
ently weak at dealing with occlusion. Then the global shape
constraint usually leads to a local optimum. In contrast, the
holistic methods can avoid the local optimum but they also
struggle under occlusion since features that are extracted at
occluded areas will directly affect the update of the whole
pose at each iteration. It might result in a pose that is
even far away from the true location. For instance, the
AAM [9] is very difficult to deal with unseen images and
occlusion. Only a few works have explicitly addressed the
occlusion issue [18], [26], [35], [42], [43]. Those works
focus on synthesized data or consider very limited number
of occlusion patterns (sunglasses, scarf and hands). Those
methods assume that only a small portion of the face image
is occluded. However, in real scenarios, the occlusion pat-
terns can be very diverse and are almost unpredictable.
Burgos-Artizzu et al. [7] proposed an occlusion-centered
approach that leveraged occlusion information to improve the
robustness of the CPR method. It estimates the location of
the landmark and, for each one an occlusion label, that is,
whether it is visible or not. N visually different regressors are
applied at each iteration. Each regressor is trained so that it
uses features from only 1 out of 9 pre-defined image zones.
During testing, the regressor outputs are weighed by weights
that are inversely proportional to the occlusion prediction
of the zone of each regressor. This method improves the
CPR-based method [8], however, cannot deal with the large
diversity of the occlusion patterns. In addition, all the above
methods require additional occlusion annotations for training,
that is expensive to obtain. Also they provide an occlusion
label for each landmark, however, the occlusion often covers
a region. In terms of predicting the importance on-line, similar
idea was used in tracking [22].

III. METHOD

Our method consists of three main parts. In Section III-A
we describe how we use the local Regression Forest voting
scheme in order to predict the Regional Predictive
Power (RPP) of regions that have resulted from an image
(over) segmentation. In Section III-B we describe how the
holistic Cascaded Pose Regression (CPR) face alignment
model is adapted to a more difficult domain, i.e. the domain
of occluded images, based on the estimated RPP. Finally,
in Section III-C, we present the proposed initialization scheme.

A. Regional Predictive Power Estimation

It is challenging to directly model the face occlusion due to
its unpredictable diversity in realistic conditions. However, the



2396

@ (b)
Fig. 2.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2015

Regression Forest (RF) voting based Region Predictive Power (RPP) estimation. (a) shows the original votes distribution inside the face bounding

box, similar dense for both the face region and occlusion region. (b) shows the distribution after the face center sieving [38]. As can be seen, many invalid
votes from the non-face parts are effectively removed, which is a strong cue to predictive the RPP. (c) is the over-segmentation result. (d) shows the
RPP map, i.e., the p, in Eq. 2, calculated over each region of the segmentation. (e) is the detection result from the local RF model with the color varies
according to the reliability of the landmark estimation, described in Section III-C.

occluders often occupy a continuous region and have different
appearance than the face, or are separated from it by intensity
edges. We use an over-segmentation and subsequently estimate
a score that reflects the power/usefulness of each of the
resulting regions in the face alignment task. The score is
estimated by analysis of the votes of a local-based Random
Forest algorithm, as shown in Fig. 2, and is closely related with
the probability that the region in question belongs to the face.

We use the efficient graph based segmentation by
Felzenszwalb and Huttenlocher [16], to get a set of regions,
which ideally do not span multiple objects [2]. Let us denote
with Rgp the set of superpixels and with r € Rgp a region
in that set. The number of regions may vary from image to
image. The RPP value of each region is generated in two
steps as follows.

1) Sieving Votes in Regression Forest: We build the RPP
prediction method based on the Regression Forest (RF) frame-
work for face alignment, proposed in [13] and [38]. Image
patch features that are extracted at several image locations
cast votes for the localization of facial landmarks. As stated
in [38], not all the votes from RF are reliable. Therefore,
Yang and Patras [38] proposes to use a bank of sieves to
remove unreliable votes based on the consistency by which
they vote for the location of the face center.

More specifically, a set of patches is extracted from an input
image I. Let us denote with V the resulting set of votes and
by V; the subset of the votes that are associated with the
landmark /. Clearly, V = Vi U Vo U ... U Vr, where L is
the number of landmarks detected by RF. Let us denote by
V' the set of votes that are associated with patches extracted
within the region . Each voting element 0 = (A,, w,, AJ, ©))
consists of two types of voting information: one (A,, w,) to
a facial landmark and the other (A, ) to a latent variable,
i.e. the face center. A, and w, are respectively the offset and
the corresponding weight of the vote. (A9, w?) are similarly
defined. The face center is localized by using the votes
associated with all the landmarks (that is the votes from all
image patches); this leads to a robust estimation of its location.
Let us denote the estimated face center by $° and assume a
voting element » casts a vote at yJ = y, + AJ with y, the
image location at which the voting element is extracted from,
the sieving works as follows:

lyy = ¥°I

i ) > 4%

Wy, = wy - o(exp(—

(1

By the negative exponential function, we convert a distance
measure in the range [0,inf) to a proximity measure in
the range (0, 1] with § a fixed parameter that controls the
steepness of this function. 1° is a threshold. Sieving can be
interpreted as a filter that rejects the voting elements whose
votes for the face center are far from the estimated center. The
set associated with the landmark / and region r after the face
center sieving is denoted by V; and V" respectively.

This procedure has been applied to effectively remove the
invalid votes for facial feature detection. We adopt a similar
idea in this work a) for estimating the predictive power of each
segmented region as well as b) for estimating the reliability
by which each of the facial landmarks is localized by the
local-based RF.

2) RPP Estimation: It is difficult to pose the RPP estimation
as a supervised classification problem as it is intractable to
generate all types of occlusions. Here we take an unsupervised
approach that estimates RPP from a set of features based on the
region statistics and vote confidence. Specifically, we utilize
the votes confidence calculated by the votes sieving procedure.
Similarly to [38], we extract features directly from the voting
maps as follows:

o Xl — 206\7’ Wy

r ZveV’ Wy

weights in the segmented region r after and before the
face center sieve is applied.

o x?> = U,. This is the area size of the region in pixels.

o X} = U{';fx. This is the fraction of the region that lies
inside the face bounding box. UP° is the area of the
region that lies inside the face bounding box. Roughly
speaking, the smaller xr3 is, the more likely it is that
r is an external object, i.e., an occluder of the face.
In the example shown in Fig. 2, a large proportion of the
hand region lies outside the bounding box, and therefore
its RPP value is very low.

. This is the ratio of the sum of the vote

Given these features, we propose a rule-based method for
calculating the RPP as follows. First, we identify the largest
most likely face region. We do so by selecting the M largest
regions inside the bounding box and assume that at least one
of them belongs to the face. This is a reasonable assumption
in real scenarios. From those M regions we select the one
with the highest x,1 and put it in a set R(S) p- We then put in
Rg p tiny regions, i.e. that satisfy er < t (where 7 is to 50)
and set the RPP of all regions in Rg p to 1. The predictive
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Algorithm 1 Cascaded Pose Regression (RCPR)

Input: Image I, initial pose S°
Output: Estimated pose ST

1: for t=1to T do

2: ft=hiI,st 1)

3 ASt = RY(f1)

4: St =51+ AS!

5: end for

> Shaped-indexed features
> Apply regressor IR
> update pose

power of all the other regions is estimated based on two strong
cues: 1) the more inconsistent votes from one region, the lower
RPP; 2) the bigger proportion of one region appears outside
the face bounding box, the lower RPP. Formally, the RPP
pr of region r is defined as follows:

: 0
_ 1 ifr € Rgp .
o+ (1 —a)xrle ifr e RSP\R(S)P

pr &)
The product, xrl xr3 is normalized to the range of [0, 1] in the set
of Rsp\ R(S) p and is the main feature used for RPP estimation.
The parameter o is the lower bound of the RPP, that is, the
range of the RPP is [a 1]. We empirically set it to 0.2 and will
discuss the sensitivity with respect to it in the experimental
section.

B. Face Alignment Model Adaptation With RPP

In this section, we will first describe the original Cascaded
Pose Regression (CPR) [8], [14] and Robust Cascaded Pose
Regression (RCPR) [7] framework then we describe how the
above RPP information is used to adapt these models in the
presence of un-modeled occlusions.

1) CPR and RCPR Framework: The CPR framework has
been shown to be effective and accurate in estimating the
location of face landmarks [8], [14]. The procedure can be
summarized as follows in Algorithm 1.

It starts from an initial shape S° and apply a sequence of
regressors to update the shape until the last stage of regressor
is applied. At the f-th iteration, the shape estimated at the
previous iteration S'~! is updated based on shape-indexed
features h'(S'~!, I'), where I is the image. §" = S'"~! 4+ AS!
where AS’ is the shape update. As in [8], which is called
Explicit Shape Regression (ESR), two-level cascaded regres-
sion is used, i.e., at each iteration, there are K primitive fern
regressors R' = (R, ..., Ry, ..., R}) that share the same input,
namely features that are indexed relative to S’ —1 and whose
outputs are combined in order to obtain the shape update A S’
as follows:

K K
AS' =" AS; = > Ri(h'(s"", D) (3)
k=1 k=1

Robust Cascaded Pose Regression (RCPR) [7] improved
CPR in three aspects: 1) it proposes a new interpolated
shape-indexed feature, which is more robust to large shape
variations; 2) it proposes a ‘smart restart’ scheme that deals
with unreliable shape initializations; 3) it proposes area-
based local regression to handle occlusion. Three typical
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variants are RCPR (feature only), RCPR (feature+restart) and
RCPR (full). The area-based local regression (ferns) can be
viewed as the third level of regression. It can be summarized as
follows. Given the face location in an image, the face is divided
into a 3 x 3 grid. Instead of training a single boosted regressor,
N regressors are trained and each regressor is allowed to
draw features only from 1 of the 9 pre-defined zones. Finally,
each of the regressors proposed updates dSi,---,dSy are
combined through a weighted mean voting. For the k-th update
at the 7-th iteration, the update of RCPR is calculated as:

N
AS =" wjsSy. ©)

n=1

where wj! is the weight that is inversely proportional to the
occlusion estimation in the zones from which the regressor
drew features.

2) Model Adaptation With RPP: FEither the update is
calcualted from Eq. 3 or Eq. 4, it is based on the shape-indexed
features. There are k different ferns in Eq. 3 and N different
ferns in Eq. 4. Note that despite the fact that the image features
used by different weak regressors are indexed relative to the
same pose, the weak regressors are different random ferns, and
therefore the actual image features used by each regressor are
at different pixel locations for each one. We first show how we
use the RPP to adapt the update funtion of Eq. 3. Assuming
F features are used by each fern regressor, we denote the
image locations used to calculate the features of the k-th
regressor as xk = (xll‘,...,x]},...,xlz‘F). In total, 2F pixel
locations are used to produce F features. In Section III-A2
we have calculated the Regional Predictive Power, thus we
can directly get the pixel predictive power according to which
region it belongs to. The overall predictive power of the 2F
locations is calculated as the mean value, that is

2F
1
o = 7 D> pro e n). (5)

f=1reR

We adapt the regression model of Eq. 3 by reweighing the
outputs of the K weak regressors by their respective predictive

power. The above weight is normalized to wy; = ZK—wk
—1 Wk
then the shape update at the ¢-th iteration is: =
K
AS' =" i AS;. (6)
k=1

The first two variants of RCPR update their pose by Eq. 3
as well. Therefore our RPP-adapted version of RCPR (feature
only) and RCPR (feature + restart) is adapted by the above
equation.

The full version RCPR (full) uses Eq. 4 for pose update.
We replace its weight w; by our RPP-based weight wj. It is
calculated in a similar way to Eq. 5. Then the update function
is replaced by:

N
AS; = > w}S;. ©)
n=1
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To this end, we have shown how the RPP can be used to
adapt both the two-level version of CPR (ESR) and three-level
version of CPR (RCPR) and its variants.

C. Initialization From Local-Based Model

Existing iterative methods, e.g., the SDM [34] and
CPR [14], depend on initialization and only those initial-
izations that lie within a certain range can converge to the
correct solution. However, there is no guarantee that the
same face detector is used during the testing and training
time. For instance, the SDM is trained based on mean pose
deduced from Viola-Jones detector, however, Viola-Jones face
detector misses many faces in the COFW dataset due to its
heavy occlusion. Here we propose an initialization scheme
that uses the estimated landmark locations and their estimated
reliability, as those are provided by the local based Regression
Forest method. Since the RF-based method is based on local
patch features it does not require initialization, thus it is
inherently more robust to face bounding box shifts.

Specifically, let us denote the estimate from the RF method
in Section III-B by y = (y1,...,, 1, ..., yr). Here, we also
estimate the reliability of each landmark, that is, the confidence
that the localization is correct. This differs from most of
the face alignment methods. The reliability of a landmark
is derived from the votes that are used to localize it and is
calculated as follows:

2

g=3 o, /
veV;

veV

®)

We then find the L.y, common landmarks shared by
the RF-based model and the RCPR model. Then instead of
randomly selecting m shapes from the training set, we search
the m nearest neighbors to the shape estimated by the RF.
The distance between shapes is calculated as the sum of
weighted Euclidean distances of all the common landmarks,
where the weights are given by Eq. 8. This weighted distance
measure suppresses the impact of the landmarks with large
localization errors. Formally, the distance from the estimated
shape vector y, to another shape y’ is given by,

L(tom

d(y,y) =D sillyi = yill2.

=1

©)

Note that, when calculating the distance, all the shapes are
first normalized by procrustes analysis. This distance is used
to calculate the m nearest neighbors in the training set - those
are used to initialize the cascaded method. Conceptually
this initialization scheme is similar to [24]. However, it
uses backprojection to measure the similarity of a detection
to the training samples for viewpoint estimation while our
method measures the similarity in shape space and used it
for selecting initialization shapes.

D. Method Summary

We summarize the proposed method in Algorithm 2.
We emphasize that our method relies on two models, namely
the regression forest RF and a model from CPR family,
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Algorithm 2 The Proposed Framework

Input: Face image I, Face bounding box BB, Regression
Forest RF, (R)CPR ferns Fern.

Output: Estimated pose ST, Face Mask FM

: Do segmentation on / and get superpixels R,

: RPP, y <+ RF(E,, I, BB) > Get RPP and pose y

: Calculate init pose S° based on y

: ST « Fern( S°, RPP, I) > Apply Fern as Algorithm 1,
adapted by Eq. 6 or Eq. 7.

5: FM < RPP

R

> Set threshold on RPP

that is Fern, both of which do not need to be retrained.
We only adapt the second model (i.e. Algorithm 1) using
information derived from the first model in order to make it
more robust to heavy occlusions. More specifically, first the
regression forests are used to estimate the region predictive
power (RPP) of local regions and to give good initializa-
tions SO of the shape. These are then used in an adapted
Fern method, that is an adaptation of Algorithm 1. The
adapted Fern method, starting from the initialization SO,
updates the pose using Eq. 6 (or Eq. 7) in step 3 of
Algorithm 1. We note that our method outputs not only an
accurate and robust face alignment but also a dense face mask
that indicates which pixels belong to the face and which not.

IV. EXPERIMENTAL RESULTS

A. Datasets and Implementation Details

We report the performance of our method on the most
challenging datasets, namely, the Caltech Occluded Faces in
the Wild (COFW) [7] dataset and the 300 Faces in-the-Wild
(300-W) [27].

COFW is the most challenging dataset that is designed
to depict faces in real-world conditions with partial
occlusions [7]. The face images show large variations in
shape and occlusions due to differences in pose, expression,
hairstyle, use of accessories or interactions with other objects.
All 1,007 images were annotated using the same 29 landmarks
that are used for the LFPW [6] dataset. The training set
includes 845 LFPW faces + 500 COFW faces, that is 1,345
images in total. The remaining 507 COFW faces are used
for testing. Each image is annotated with the location of
29 facial landmarks and with corresponding 29 labels indi-
cating whether the landmark is occluded or not. The average
landmark occlusion on COFW is over 23%, while on LFPW is
only 2%. Thus the occlusions in the test images are consider-
ably more extended than in the training ones. We extend this
dataset by providing the face masks for the 507 test images.
The face mask indicates whether a pixel inside a face image
belongs to the face (1) or not (0). Some example images are
shown in Fig. 3.

300-W dataset is created for Automatic Facial Landmark
Detection in-the-Wild Challenge [27]. Landmark locations
for four popular data sets including LFPW, AFW, HELEN
and XM2VTS, are re-annotated with the same 68 points
mark-up. In addition, it contains a new set called iBug where
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Fig. 3.

Al

Face image (left) and its mask annotation (right).

the images are more challenging. It provides a good bench-
mark for face alignment evaluation thus we make our compari-
son to the most recent methods based on this dataset. However,
it only provides the training images for the challenge, thus
we follow the experiment setting of [25] in order to compare
with the recent methods. The training set is split into two
parts. More specifically, the training part consists of AFW, the
training images of LFPW and the training images of HELEN,
with 3148 samples in total. The XM2VTS set is not used in
our method as it is taken from very constrained environment
and is not publicly available. The testing set consists of the test
images of LFPW, the test images of HELEN and the images in
the iBug set, with 689 samples in total. The test set is further
partitioned into Easy-set (LFPW and HELEN test images) and
Challenging-set (iBug images).

For the local Regression Forest, we use the trained model
provided by [38], which is trained on a subset of AFLW [19]
that contains mostly near frontal face images to ensure that the
19 facial landmarks are visible. We use all their default model
parameters setting. Given that our adaptation methodology
works on those models, it is clear that it does not exploit any
training instances or annotations such as the occlusion labels.
In our adaptation model, the number of the largest regions,
that is the variable M in section III-A, is set to 3. The number
of nearest neighbors that are used for initialization, that is,
the variable m in section III-C is set to 5 - this is the default
setting for RCPR. The error is measured as a fraction of the
interocular distance. We note that in the evaluation process
except when explicitly testing the face bounding box shift
caused by changing the face detectors in Section IV-BS5, the
same face detector is used for both training and testing for fair
comparison.

B. Results

1) RPP Estimation Evaluation: We empirically evaluate the
performance of the RPP estimation based on the facial area
annotation on COFW test images. Note that we do not use
the annotation to tune our system during training. We set a
threshold, equal to trpp = ”T“, on the RPP map. Regions
with RPP value larger than the threshold are considered to be
facial regions, and regions with smaller values are considered
to be occlusions. Since we have annotated the face region
masks for the testing images, we calculate the overlap area
ratio inside the face bounding box to measure the performance,
p= %. The average ratio is 72.4%, which is surpris-
ingly high, given that the average percentage of area occlusion
is 46.2%. We further infer the landmark occlusion state. If the
RPP value of the region that one landmark is located is larger

than a threshold zgpp, the landmark is regarded as visible,
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Fig. 4. The distribution of x,l feature (a) and landmark reliability s;

(b) for facial regions and non-facial regions. In (b) the value s; of one face
is normalized in the range between O and 1.

and vice versa. For landmark occlusion detection we get
a 78/40% precision/recall, which is close to the 80/40%
precision/recall reported in [7]. We note that in contrast to [7]
we do not use occlusion information during training.

2) Feature Analysis: In Section III-A we developed features
for RPP computing and reliability metric for landmark local-
ization. We mainly rely on two features for RPP estimation,
ie. x! and x}. In order to show the relevance of x!, based
on the face mask annotation, we plot the histogram of feature
values for the face-regions and non-face regions, respectively,
in Fig. 4(a). The p.d.f of x! in non-facial regions decreases
gradually. On the contrary, the p.d.f of x! in facial regions
peaks at around 0.5. In Fig. 4(b) we plot the histogram of the
landmarks reliability s;, defined in Eq. 8, from non-occluded
and occluded face regions. We see that the reliability of most
landmarks under occlusion tend to be lower than the reliability
of the visible landmarks.

3) Face Alignment Evaluation on COFW: Here we evaluate
the contribution of each component of the proposed method.
We take four models from the CPR family as baseline meth-
ods: 1) the Explicit Shape Regression(ESR) [8]; 2) the feature
only version of RCPR [7] (RCPR feature); 3) the RCPR with
feature and smart restart [7] (RCPR feature+restart); 4) the
full version of the RCPR (RCPR full). All of them are trained
on the COFW training images with the same settings except
the RCPR (full) which has used the landmark visibility labels
during training. In the experimental comparison, RF+{-baseline
is the direct combination of the RF sieving [38] and the
baseline method, i.e. the output of [38] is used to find non-
weighted nearest neighbouring shapes (all s; in Eq. 8 are set
to 1) to initialize the baseline methods. Their correponding
model adaptation scheme is described in Section I1I-B2. RPP
weighted+RF initialization is our full method. For methods
not based on RF initialization we use 5 random initializa-
tions, that are the same for all methods. For the RF-based
initialization methods, we replace the 5 initializations with
the searched results. For the face images that need smart
restart, the initializations in restart are all randomly generated.
We repeat this process 4 times and report the average perfor-
mance in terms of proportion of failures and average errors,
similar to [7]. The number of restarts in the second round is
also recorded as it is an important indicator of the efficiency.
The results are shown in Fig. 5.

We can draw the following conclusions from the results:
1) the direct combination (RF+baseline) does not perform
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Fig. 6. Comparison to the recent methods, SDM [34], RCPR [7],
RF_Sieving [38], method of Yu et al. [41], DRMF [3], and CSRIO SDK [11]
and HPM [18] on COFW test images for their common 16 facial landmarks
(only 15 for [38]). For the DRMEF, the pre-computed face bounding box model
is used since the tree-based method does not work on such images.

better than the baseline method; 2) the weighted models
improve all the baseline methods in the CPR family, at an
average mean error reduction of 0.8 and a decrease of failure
rate of 2.6%; 3) it is worthy to note that the RPP based weights
are even more effective than the original learned weights used
in the RCPR (full) model, with a failure cases decrease 1% and
a mean error decrease of 0.65; 4) the proposed initialization
scheme is very effective and further decreases the mean error
by 0.8 and the failure cases by 4%. 5) the smart restart has
less impact when our proposed initialization scheme is applied.
The number of restarts decreases from 200 to 30 among the
507 images, which means much fewer instances (85% less)
require to restart the initializations [7]. The comparison to
other state of the art methods on COFW is shown in Fig. 6,
where the proposed method, that is built on top of RCPR
(feature only), shows superior performance. Some examples
are shown in Fig. 8.

We also compare to the recent methods that with codes
publicly available on the common landmarks of the COFW
test images, as shown in Fig. 6. For Hierarchical Deformable
Part Model (HPM) [18] , since the code is not available,
we communicate with the author and get the detection results,
which is slightly better than what they have reported in the
original paper. As can be seen, our proposed method shows
competitive results on this challenging dataset.

In the proposed RPP model, there is one parameter a
that influences the facial landmark localization. We increase
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Results on COFW, compared to CPR-family approaches [7], [8].

TABLE I
SENSITIVITY OF a

a 00 01 02 03 04 05 06 07 08 09 10
Fail. rate 23.4 21.3 20.7 20.5 20.7 21.1 214 227 22.6 22.7 22.8

TABLE II
MEAN ERROR (68P) VS. # OF INITIALIZATIONS

m 1 2 3 4 5 6 7 8 9 10
Mean error 8.11 7.35 6.93 6.74 6.69 6.56 6.47 640 6.34 6.25

TABLE III
300-W DATASET (68 LANDMARKS)

Method Full-set  Easy-set Challenging-set
ESR[S8] 7.58 5.28 17.00
SDM[34] 7.52 5.60 15.40
LBF fast[25] 7.37 5.38 15.50
LBF[25] 6.32 4.95 11.98
RCPR[7] (baseline) 7.54 5.67 15.50
Our method 6.69 5.50 11.57

TABLE IV

300-W DATASET (49 LANDMARKS)

Method Full-set Easy-set Challenging-set
TIFA[4] 7.48 5.58 15.30
SDM[34] 7.06 5.56 13.22
RCPR[7] (baseline) 7.20 5.47 14.28
Our method 6.57 5.40 11.40

its value from O to 1 with a step of 0.1 for the PCPR
(feature—+restart) model. The result is shown in Table I.

When «a is set to 0, the result is the worst, when a lies
between 0.1 and 0.5, the performance is stable and when «
becomes larger than 0.5, the performance approaches gradually
to the baseline method, i.e., the model with equal weights.
We set the value to 0.2 in all our experiment. Its value can be
set by cross validation in practice.

4) Face Alignment Evaluation on 300-W Dataset: First on
this dataset we evaluate the impact of the value of m in
Section III-C. We vary the value of m from 1 to 10 and record
the landmark-wise mean localization error of the 300W test
images. As shown in Table II, the error decreases gradually
with the increase of initialization number. In what follows, we
set m = 5 since the baseline methods, both CPR and RCPR
uses this value for runtime performance.
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Fig. 7. Example results based on Viola-Jones face detector (blue) and 300-W face detector (red). SDM is trained based on Viola-Jones face detection and
the other two are trained on 300-W face detection. The number under each pair shows increase of failure cases when face detection changes from one to the

other. (a) SDM [34] (1 20%). (b) RCPR [7] (1 7%). (c) Our method (1 4%).

Fig. 8.
corresponding RPP map (lower). See Fig. 1 for color map definition.

We then compare our proposed method with the most
competitive methods including the Supervised Descent
Method (SDM) [34], the ESR? [8], the Incremental Face
Alignment (IFA) [4] and the RCPR [7]. We use the
full-RCPR version but we do not use any occlusion labels. For
each of the regressor in Eq. 4, we treat them equally during
the training stage and set the weight to % This is equivalent
to treat all landmarks visible. We take this as the baseline
for adaptation as this gives us the best results compared
to other RCPR variants. We first make the comparison as
shown in Table III where the results of SDM, ESR, LBF and
LBF-fast are quoted from [25]. We train the baseline RCPR
model on the same training set for a fair comparison.
As can be seen, although we only have comparable results

2The result might be different from that in Section IV-B3, where the
re-implementation source code is used.

Example results from COFW (first two rows) and LFPW and HELEN (last two rows), including landmarks detection results (upper) and the

to LBF, our results are better than the rest of the models.
We note that LBF needs to train hundreds of thousands of
trees. Taking this 68-landmark face as an example, its full
model contains 5 stages and for each landmark, 1200 trees
(with depth 7) are used. Thus in total, there are 1200x68 x5
trees are needed, which is a huge number. On the contrary, in
our method, both the local Regression Forest and the RCPR
model is quite easy to train and the model size is much smaller.
We also note that as shown in Table II, if we use more than
9 initializations, we obtain better performance than LBF in
terms of localization accuracy (6.25 vs. 6.32). The improve-
ment over the baseline RCPR model validates the effectiveness
of our proposed method. We then compare to IFA and SDM
in Table IV, as they show the state of the art results and have
available test code. We train the baseline RCRP model on
the Multi-PIE4+-LFPW (similar to the SDM model according
the description of the paper) for localizing the 49 inner
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facial landmarks. Then we apply our adaptation method on it.
As can be seen, though the baseline RCPR method fails to
compete the IFA and SDM, our method improves it clearly
and shows better performance. From the two comparison we
also note that the superior performance of our method on the
Challenging subset is more significant, which is as expected
since those images contain much more occlusions.

5) Face Bounding Box Shifts: Face detection itself is a
challenging problem for faces under occlusion and with
different head poses [21]. Thus for most of the methods we
have discussed in this paper, face alignment starts from a
given face bounding box. However, as different types of face
detectors are available, there is no guarantee that the same
detector is employed for both training and testing, we in
this section evaluate the effect of face bounding box changes
that is caused by different face detectors on the easy set
of 300-W (LFPW and HELEN test images). As shown
in Fig. 7, when the face bounding box changes, the perfor-
mance of the cascaded methods changes significantly. This
is as expected because the cascaded methods reply on face
bounding box to calculate the initialization. The failure cases
of the SDM method increases by 20% on average when
the face bounding box of the test images changes from
Viola-Jones face detector to 300-W face detector while that
of the RCPR increases by 7% when the face bounding box
changes the other way. The fact that the increase in failure of
the SDM method is higher than that of the PCPR is probably
due to their difference in initialization methodology, since
the SDM only calculates one pose from the bounding box
for initialization while the RCPR randomly selects 5 from
the training instances. By using our proposed initialization
scheme, the increase is minor (4%), around a half of the
baseline RCPR method.

6) Run-Time: We record the run-time performance on a
standard 3.30GHz CPU machine. For the COFW test images,
the fps of the three components (segmentation (c++), Regres-
sion Forest (c++) and CPR (Matlab)) of our proposed method
is 12, 17 and 11, respectively, and the overall speed is 4 FPS,
that is a bit faster than the RCPR (full) method, and much
faster than the HPM [18] (0.03FPS). On the LFPW and
HELEN, the speed is 3.3 fps and 1 fps respectively while
the segmentation takes longer time when the image becomes
larger. Applying the segmentation only at a region of interest
surrounding the face bounding box instead of the whole image
can make our method more efficient. However, comparing to
the LBF, which has reported 3000FPS execution time at testing
stage, our method is still much slower. We will work towards
improving the efficiency in our future work.

V. CONCLUSION

We present a method for face alignment model adaptation,
based on Regional Predictive Power (RPP). We achieve the
state of the art results for face alignment in challenging
databases. Moreover, we show the efficacy of the proposed
scheme in facial region prediction, something that can have
applications in face analysis in real world applications such as
face verification and facial expression recognition. In future
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work, we will integrate the face segmentation, facial region
prediction and landmark estimation in a single optimization
framework and extend the RPP for face analysis.

This work also raises a few interesting problems. First,
with the rapid progress of face alignment, there is a demand
of more advanced face detector that can work better in
unconstrained environment, since most of the face alignment
methods are based on face detection. Second, while most of the
current methods work quite well on images with minor partial
occlusion in a very fast speed but struggle under occlusion,
developing a method based on the difficulty level of the
test image to select a proper model is useful for practical
applications.
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