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ABSTRACT

We address the glass object localization problem with a RGB-
D camera. Our approach uses a nonparametric, data-driven
label transfer scheme for local glass boundary estimation. A
weighted voting scheme based on a joint feature manifold
is adopted to integrate depth and appearance cues, and we
learn a distance metric on the depth-encoded feature mani-
fold. Local boundary evidence is then integrated into a MRF
framework for spatially coherent glass object detection and
segmentation. The efficacy of our approach is verified on a
challenging RGB-D glass dataset where we obtained a clear
improvement to the state-of-the-art both in terms of accuracy
and speed.

Index Terms— Glass object detection, segmentation, la-
bel transfer, adaptive feature learning, MRF inference.

1. INTRODUCTION

Glass object localization has been a challenging problem for
the computer vision and robotics community. The appear-
ance of glass objects largely depends on the background and
is therefore more difficult to capture by visual features. How-
ever, accurate localization of glass objects is a crucial func-
tionality as they are commonly found in various indoor envi-
ronments.

Most previous work on glass localization focused on
the special refractive properties of glass, and their interac-
tion with opaque surfaces in images [1} 12} 3]. Osadchy et
al. [4] recognize particular objects from specular reflections
which uses knowledge of their 3D shape. On the other hand,
McHenry, Ponce and Forsyth [5] design a classifier which
attempts to find generic glass/non-glass boundary based on
a combination of most commonly used cues, including color
and intensity distortion, blurring and specularity. These cues
have been further integrated with contours [6] or object cate-
gories [[7] to infer a coherent object hypothesis.

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications, and the Digital Economy, and
the Australian Research Council (ARC) through the ICT Centre of Excel-
lence Program. This research was also supported in part by ARC through its
Special Research Initiative (SRI) in Bionic Vision Science and Technology
grant to Bionic Vision Australia (BVA).

training data

feature manifold

Fig. 1. Top: Ilustration of feature manifold based glass bound-
ary classification. We use a learned feature manifold to match every
boundary fragment in a test scene (shown as image patches) to train-
ing set in order to predict its label. Bottom: Large variation on glass
boundaries: patches examples.

Recently, range (depth) cameras have been employed to
detect transparent objects, in which the attenuation of signal
intensities is exploited. Wallace and Csakany [8]] develop a
time-of-flight laser sensor based on photon counts. Klank,
Carton and Beetz [9]] use two images from a time-of-flight
camera to detect and reconstruct transparent objects. The
popularity of RGB-D sensors (e.g., Kinect) has allowed re-
searchers to utilize both intensity and depth to localize glass
objects. Lysenkov, et al. [[10] have proposed a model tak-
ing into account both silhouette and surface edges, and a
CAD-based pose estimation method with a robotic grasp-
ing pipeline. Another work [11] exploits the missing-vs-
nonmissing pattern in the depth channel which can be used as
an effective feature for approximate glass object localization.

Despite those progresses, the generic glass detection and
boundary localization is hardly a solved problem. One key
reason is the large appearance variations at glass boundaries,
as shown in a few examples in Fig.[I]. The state-of-the-art
methods, which train generic classifiers for boundaries, pro-
duce unreliable predictions (see Fig. [3] for examples). Even
with RGB-D cameras, the missing patterns in depth chan-
nel can be noisy, or distorted due to local refractive proper-
ties [[L1].

To address this feature variation issue, we propose an im-



age adaptive approach to predicting glass boundaries. In par-
ticular, we focus on the scenario that inputs are captured with
a RGB-D camera. The main idea of our method is to generate
boundary proposals based on a nonparametric feature model.
Our model is represented by a joint depth and appearance fea-
ture manifold, on which each point is the glass boundary fea-
ture of an image patch pair. The boundary label of any pair
of neighboring patches is predicted by a weighted voting of
its nearest neighbors on the feature manifold. The distance
metric on manifold is learned in a supervised manner.

We then integrate the locally adapted glass boundary pre-
dictor into a superpixel-based pairwise MRF [[12] for glass
object detection and segmentation. The MRF labels every su-
perpixels as glass vs non-glass, in which our boundary predic-
tion is used to modulate the smoothing terms in random fields.
As we will show in the experiments, our approach generates
more accurate glass boundary predictions, which simplifies
the overall model structure and the inference algorithm.

Our work is inspired by the recent progress in nonpara-
metric, data-driven approaches on label transfer and propa-
gation (e.g., [[13} [14]). These methods first retrieve a subset
of training images based on global image statistics, and use
the retrieved images for label transfer on the superpixel level
for dense image parsing. In particular, Fathi et al. [15] take a
semi-supervised learning approach to learn a metric for label
propagation in videos.

Our contributions in this paper are threefold. Firstly, we
propose novel features for glass localization and a flexible
feature pool for improving performance. Secondly, our work
is the first to explore nonparametric label transfer within
the context of glass detection, and exploit a joint depth-
appearance manifold for transductive learning. Lastly, we
integrate our locally adapted glass boundary detector into a
MRF framework for glass object detection and segmentation,
achieving a clear improvement to the state-of-the-art on a
challenging RGB-D glass dataset in terms of accuracy and
speed.

2. OUR APPROACH

Our approach first generates candidates for glass boundary
and region by over-segment an input image into superpixels.
We then estimate the local boundary by a weighted voting
scheme on a joint feature manifold. Finally, we use a pairwise
MREF to integrate the local estimation and generate spatially
coherent glass object hypotheses.

2.1. Superpixels and Features

Superpixels. Our first step is to run SLIC [[16] and partition
image into superpixels. We choose SLIC as it better follows
glass and depth boundaries overall compared to alternatives
(e.g., edge detector and triangulation as in [11]).

Boundary features. Suppose we have an input image I and
denote each superpixel with a single letter (e.g., ), then any
boundary fragment can be indexed by two letters (e.g., ij,
indicating ¢ and j are neighbors and 77 is the shared bound-
ary between them). The local boundary feature vector f;;
includes: (i) Hue and saturation [3]]; (ii) Blurring [S]]; (iii)
Blending and emission [[1]; (iv) Texture distortion [S} [17]; (v)
Missing depth [11]]. In addition, we add (vi) Color histogram
on boundary; (vii) HOG [18]] on depth data; and (viii) Range
(depth) histogram. Note that the above features are extracted
from a pair of windows on either side of a boundary fragment,
and we use the non-oriented relative ratios in our feature vec-
tor.

We augment the image cues by sampling features on mul-

tiple scales and at multiple locations. Specifically, we aug-
ment the feature set in the following two aspects:
(A) We run superpixelization at a coarse scale and a fine scale,
and perform label transfer separately (see details in Sec.[2.2).
Afterwards, we merge the local glass boundary proposals
from the coarse into the fine scale. Merging is based on the
image spatial location, subject to a fixed pixel error tolerance.
(B) Multi-scale and pattern-based features are extracted for
each boundary fragment. The multi-scale extraction involves
features within windows at 2-times and 3-times of the default
feature window size, while the pattern-based feature sampling
further augment the features with randomly selected rectan-
gular patterns, at both sides of a boundary fragment, similar
to TextonBoost [19]].

2.2. Boundary label transfer

The main challenge of glass localization lies in boundary de-
tection, as the refractive properties of glass lead to large vari-
ations in the relative features (i.e., features computed on the
difference at both sides of glass boundaries). Instead of build-
ing a single classifier in the feature space, we explore the local
feature manifold, and label transfer based on local matches on
the feature manifold.

More formally, let e;; be a binary variable associated with
boundary fragment 77, and e;; = 1 if the fragment is part of
glass boundary and 0 otherwise. A weighted voting scheme is
adopted to estimate P(e;;|I), which we use as a local bound-
ary classifier:
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where f;; and fy, are local feature vectors for boundary frag-
ments ¢j and kl, ¥ is a diagonal matrix with diagonal ele-
ments being the distance between f;; and fy;, d(-) is an indi-
cator function, and ly; is the ground-truth label of ey;. Here
we sum up weighted votes from every training boundary frag-
ment ey;. The weight w;; ; = exp ( —(fij — fkl)TE(fij -



fkl)) is based on a distance metric learned on the feature
manifold. In this work, we only estimate P(e;;|I) with k-
nearest neighbours, i.e., the local feature manifold, and set
k = 10 in our experiments.

The weight w;; 1, is learned with manually labeled sam-
ples, by adopting the strategy proposed in [[15] which casts
a distance metric learning problem as a binary classification
task. We define a target metric as w;; 1y = 1if l;; = l1;, and
wij k1 = 0 otherwise. Learning of X is performed with linear
regression on training data. Intuitively, we prefer the similar-
ity weight w;; 1 to be high if both fragments are part of glass
boundary, or both are not.

2.3. Object model and inference

Our glass object model follows a pairwise Markov random
field [12] formulation with unary and pairwise terms on su-
perpixel nodes. Denote the set of all image sites (i.e., super-
pixels) as S. Let G be the neighbourhood graph on S based on
the spatial relationship. Denote D = {d;} as a set of binary
variables associated with superpixels, and we assume binary
state space {0, 1} for d;, with 1 indicating glass regions. Our
energy function can be written as follows:
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where (3 is the weighting coefficient between unary and pair-
wise terms, and N is the neighborhood. The unary term
¢p(d;; ) is the negative log-likelihood given by a local SVM
classifier:

¢p(di; 1) = —log(P(di|gs)) 3

where g; is features extracted for superpixel d;. The features
we use for superpixels only include (i), (v), (vii), and (viii)
of those used for boundary (see Sec. for all boundary fea-
tures). We also extract multi-scale image features for each
superpixel.

For the pairwise term ¢ p(d;, d;; I), we utilize P(e;;|I)
estimated by boundary label transfer to apply the boundary-
superpixel compatibility constraint. We set penalty terms
for incompatibility between a boundary fragment e;; and its
neighbouring superpixels d; and d; as:

Yp(di,d;; 1) = 6(d; # dj)P(ei; = 0)
+ Oé(S(di = dj)P(eij =+ O‘I) “4)

where P(e;;|I) is estimated by the locally adapted k-nearest
neighbour voting described in Sec. [2.1]. In the experiments
that follows, we use Loopy Belief Propagation (LBP) [12] to
compute the marginals for MRF inference. Model parameters
« and 8 were learned through cross-validation.

3. EXPERIMENTAL EVALUATION

3.1. Data Specifications and Setup

We test our approach on the RGB-D glass dataset used in [[11]],
which contains 171 RGB-D image pairs with 43 distinct glass
objectﬂ . We follow the training/test data split in [11]. As
shown in Fig. [3] the dataset were collected in various scene
categories and many of the glass objects are very challenging
for localization due to background clutter.

We use SLIC [16] to generate superpixels, with initial re-
gion sizes 10 and 30 px. The pixel error tolerance for merging
the boundary proposals from the coarse superpixel layer is set
to 5 px. For local boundaries, we extract features on 3 dif-
ferent scales, and each scale consists of 50 randomly selected
rectangular patterns on both side of the detected boundary, re-
sulting in 300 feature windows. The local superpixel feature
set is also generated at 3 scales, and we use SVM with RBF
kernel for the unary potential in our MRF. The model param-
eters « and S chosen by cross validation were 0.5 and 0.25
respectively.

3.2. Results and Discussion

The quantitative and qualitative results using our method are
shown in Fig. [2] and Fig. [3] respectively. We compare our
approach with [[11], referred as “Joint”. We also show the
performance based on the boundary classifier output, and see
why our method is capable of producing superior results with
a simpler MRF model. These local boundary classifier out-
puts are referred to as “Unary” in the figures.

The overall precision and recall on the RGB-D glass
dataset is shown in Fig.[2]. The left and middle plots present
the precision-recall figures under two metrics: boundary
pixel accuracy and region pixel accuracy. For boundary ac-
curacy, we use the benchmark utility from [20] and follow
the matching procedure. As both the method from [11] and
our method are capable of recovering major glass surface (as
a result of using depth features), region pixel accuracy can
be less sensitive to noise at glass boundaries as it measures
pixel-wise accuracy over the entire image. Therefore we ad-
ditionally present another region pixel accuracy based result
in the right plot which only considers pixels within 10 px of
ground-truth glass boundaries. This metric directly reflects
the region recovery quality near glass boundaries, which is
vital to accurately recovering the shape of glass objects. We
achieved superior results on both glass boundary detection
and final inference results. While joint inference is able to
boost the the performance of noisy unary responses, having
cleaner boundary proposals will allow us to adopt simple and
more efficient inference algorithms.

Fig. [3] presents some hard examples for comparison for
both methods. Note that noisy boundary estimate is the main

IThe dataset can be accessed from http://users.cecs.anu.
edu.au/~taowang.
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Fig. 2. The overall precision and recall on RGB-D glass dataset for various methods. Left: Performance based on boundary pixel accuracy.
Middle: Performance based on region pixel accuracy on the whole dataset. Right: Performance based on region pixel accuracy in the glass
boundary neighbourhoods (i.e., regions within 10 px of ground-truth glass boundaires).
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Fig. 3. Hard examples of glass detection results on the RGB-D

glass dataset. Column (a): RGB image frame. (b): Unary response
from local glass boundary classifiers in [11]]. (c): Joint inference and
depth recovery results in [11]. (d): Glass boundary proposal results
with locally adapted label transfer. (e): Inference and depth recovery
results with the proposed method. Note that missing depth readings
are recovered by a piece-wise planar model for glass region [11]] and
smoothed out using a median filter elsewhere.

reason for failure of the joint inference method. The proposed
method, on the other hand, showed very reliable and accurate
prediction results. Our method has eliminated some circum-
stances where predictions on the boundary nodes and super-
pixel nodes are inconsistent (e.g., the second example in Fig.
[B). As we can see, the success of the proposed method is pri-
marily due to cleaner glass boundary proposals based on the
learned feature manifold. Even sophisticated inference is un-
likely to recover glass boundary if the initial estimates are too

Local (s) Inference (s) Total (s)
Joint 0.257 14.542 14.799
Ours 0.928 0.898 1.826

Table 1. Per-image runtime statistics for method in [11] and the
proposed method. On average the proposed method is about 8 times
faster. See text for details.

weak or severely contaminated by their neighbors.

Finally, we compare the runtime of both methods with our
mixed MATLAB and C (mex) implementation. The runtime
was broken down into two major components: local bound-
ary estimation and inference. The local part shall include pre-
processing, feature extraction and local classification. The
proposed method takes longer as we need to extract more fea-
tures. The inference part for the method in [11] requires up
to 20 runs for LBP or mean-field approximations, while ours
requires only once. The post-processing (i.e., plane segmen-
tation and depth recovery) takes only a fraction of the total
runtime, and therefore is not timed. We report the average
runtime per image on an Intel i3 laptop with 4GB RAM in
Table[T]. Note that with a native implementation, our method
may be further accelerated for real-time applications.

4. CONCLUSION

In this paper, we explored a joint feature based label trans-
fer approach to glass object localization. We propose a novel
depth and appearance feature representation for glass bound-
ary and surface detection, and learn a distance metric on the
relative feature manifold for glass boundary label transfer. By
integrating our glass boundary proposals into a pairwise MRF
model, we obtained a significant improvement to the state-of-
the-art on challenging examples in a RGB-D glass dataset.
Our method can be used as a starting point for more sophis-
ticated algorithms that involves glass surface reconstruction.
We would also like to further explore depth-encoded feature
manifold for learning with weakly labeled data.
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