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Abstract

This paper addresses the problem of object-mask regis-
tration, which aligns a shape mask to a target object in-
stance. Prior work typically formulate the problem as an
object segmentation task with mask prior, which is chal-
lenging to solve. In this work, we take a transformation
based approach that predicts a 2D non-rigid spatial trans-
form and warps the shape mask onto the target object. In
particular, we propose a deep spatial transformer network
that learns free-form deformations (FFDs) to non-rigidly
warp the shape mask based on a multi-level dual mask fea-
ture pooling strategy. The FFD transforms are based on
B-splines and parameterized by the offsets of predefined
control points, which are differentiable. Therefore, we are
able to train the entire network in an end-to-end manner
based on L2 matching loss. We evaluate our FFD net-
work on a challenging object-mask alignment task, which
aims to refine a set of object segment proposals, and our
approach achieves the state-of-the-art performance on the
Cityscapes, the PASCAL VOC and the MSCOCO datasets.

1. Introduction

Aligning a shape mask to object instances is a commonly
used strategy in segmenting objects from background or
inferring shape deformation of individual objects, and has
wide applications in semantic instance segmentation [34],
object proposal generation [14] and visual object track-
ing [19], etc. While it can be viewed as a special case of
image registration problem [39], such object-mask align-
ment task is more challenging as the mask lacks internal
structure for finding the dense correspondence between the
target object and itself.

Most existing approaches address this problem by for-
mulating it as an object segmentation task, in which the
shape mask is used as an initialization, such as contour
matching [5], or an instance shape prior for binary object
segmentation [23, 31]. However, the resulting segmenta-
tion task is usually equally challenging, and does not pro-

Figure 1. An illustration of the object-mask alignment problem
and the transformation implemented by the deep free-form defor-
mation network.

vide shape alignment between mask and object.
An alternative, and sometimes more natural approach to

the object-mask alignment problem is to predict a 2D spa-
tial transformation that registers mask onto the target object,
as shown in Figure 1. Such a transformation-based strategy
has several advantages in practice. First, the problem of
predicting 2D transforms is typically simpler due to the fact
that the common transformation families, such as affine or
TPS [27], have fewer degrees of freedom and thus the out-
put of prediction lies in a lower dimensional space. Second,
for slightly mis-aligned mask and object, transforming bi-
nary masks is more efficient than recomputing the segmen-
tation or doing image registration. Finally, the predicted
transformation allows us to infer the detailed shape defor-
mation of an instance relative to its canonical shape mask.

In this paper, we propose a deep learning approach to
address the object-mask alignment problem. Given an in-
put image containing the target object and an initial mask,
our approach learns a non-rigid 2D transform that warps the
mask onto the target object. To achieve this, we design a
novel spatial transformer network that predicts a free-form
deformation (FFD) [33] transform and applies the non-rigid
transform to the input mask to generate a better alignment
between the mask and object.

Specifically, we build a deep convolutional neural net-
work consisting of two modules. The first module computes
the convolutional feature maps from the input image, and
extracts a feature representation of the image region cov-
ered by the mask. To encode the shape information of the
initial mask, and the image cues around object, we develop a
multi-level dual mask feature pooling method to capture the
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misalignment between the mask and object. Based on the
multi-level features, the second network module predicts a
FFD transform parameterized by the offsets of predefined
control points through regression. It then applies the B-
spline based FFD transform to the initial mask based on a
grid generator and a bilinear sampler, which produces the fi-
nal warped object mask.As these two network modules are
differentiable, we train the entire deformation network in an
end-to-end fashion using L2 matching loss.

We evaluate our FFD network on a challenging object-
mask alignment task, in which we aim to refine a set of
object segment proposals generated from state-of-the-art
methods. Our results show that we achieve sizable improve-
ments in Average Recall on the Cityscapes, the PASCAL
VOC and the MSCOCO datasets for different initial pro-
posal methods, which validates the efficacy of our deep FFD
network.

2. Related Work
Image registration is a long-standing problem in com-

puter vision and medical image analysis, which is typically
applied to two images and aims to find dense or sparse
correspondence between them based on similar local struc-
tures [39, 6]. The registration geometrically aligns two im-
ages (the reference and moving images), through gradually
minimizing the difference between the images [27, 1]. In
this work, however, we learn to predict the underlying de-
formations between a binary shape mask and its ground-
truth object region, which is more challenging than the stan-
dard image registration task.

Our work is inspired by the B-spline FFD model [25],
which is a powerful pool for modelling local and non-rigid
deformations. It has been widely used in medical image
registration [33] and shape registration [16]. The basic idea
of the FFD model is to deform an object by manipulating an
underlying mesh of control points. The control points act as
parameters of the FFD model and determine the deforma-
tions being modelled. In our work, we use the FFD model
to encode the transformation between the object mask and
its ground-truth object region, for its flexibility and differ-
entiable property.

The object-mask alignment can be formulated as an ob-
ject segmentation problem and solved by a variety of se-
mantic segmentation techniques (e.g., [2, 37]). Early work
on level-set based segmentation start from an initial con-
tour and iteratively evolve the contour towards the tar-
get object by minimizing a functional energy function [5].
More recent approaches tend to use initial masks as a
prior in inferring object segmentation. The masks can
be transferred from similar images with object annota-
tions [23, 24, 21], object shape prior [31] or discriminatively
trained Exemplar-SVMs [34, 14]. However, it usually re-
mains challenging to solve the corresponding segmentation

problem. In this work, we take an alternative perspective
and learn a non-rigid transformation to warp the mask onto
object.

Learning deep regression networks to align objects has
been explored in a variety of problem settings. In [36], the
authors propose a deep deformation network for efficient
object landmark localization. [20] introduces a warpnet to
match images of objects, from which it builds single-view
reconstruction. The spatial transformer network (STN) [18]
learns a parametric transform to recover the canonical view
of objects for better classification accuracy. Our method is
built on top of the STN and mainly addresses the novel task
of aligning a mask to object.

Object segment proposal generation is an important step
for semantic instance segmentation task. One strategy is to
generate object bounding boxes first based on handcrafted
features [38] or deep networks [32] followed by object seg-
mentation. Alternatively, grouping-based methods use mid-
level image cues to generate and rank multiple segment can-
didates [3, 17, 35, 22, 30]. Recent approaches to proposing
object segments learn a deep network that directly predicts
object masks from the input image. In particular, Deep-
Mask [28] builds a two-branch deep network, jointly pro-
ducing a binary mask and an objectness score for every
patch in an image. Dai et al. [8] propose a multi-task net-
work cascade for instance segmentation, in which the first
two stages generate generic bounding box proposals as well
as an object mask for each bounding box. Only a few at-
tempt to improve the quality of object segment proposals:
recent work of SharpMask [29] builds a refinement network
on top of the DeepMask net to obtain better boundary align-
ment. Our method, in contrast, explicitly learns a non-rigid
spatial transform network to warp any initial object candi-
date towards its nearest object.

3. Deep Free-Form Deformation Network

We aim to generate an object segmentation by aligning
an initial mask to its target object in an input image. To this
end, we take the transformation-based strategy that learns a
2D spatial transformer to warp the initial mask to the target
object. In this section, we introduce a deep convolutional
neural network that first predicts a non-rigid transformation
and then applies the transform to the initial mask to produce
the aligned object mask. Our network is fully differentiable
and can be trained in an end-to-end fashion.

More specifically, our network consists of two modules:
the first computes convolutional feature maps and extracts
multi-level features to capture the misalignment between
the mask and object, while the second module predicts the
non-rigid transformation and warps the initial mask. Fig-
ure 2 illustrates the overview of our network structure. We
now describe each module of our system in detail.



Figure 2. An overview of our deep FFD network for object-mask alignment. The entire network consists of two modules: the first computes
the convolutional feature maps and extracts mask features using dual mask pooling, while the second predicts the FFD transform and warps
the input mask onto the target object.

3.1. Convolutional Features and Mask Pooling

Our first network module uses a base convolutional neu-
ral network (CNN) to compute the convolutional feature
maps of the input image. To capture the misalignment be-
tween the initial mask and its target object, we introduce
a dual mask feature pooling scheme to extract multi-level
features from the feature maps. In particular, this scheme
enables us to capture the mask shape information and the
spatial context cue around the object region that can guide
the network to predict the spatial warping.

Our pooling layer takes as input a set of convolutional
feature maps and an object mask, and generates an object-
mask descriptor. Its design is inspired by the standard
RoI pooling [11] and the convolutional feature masking [7]
methods. Specifically, we form a tight bounding box en-
closing the mask as well as a larger box by expanding the
tight box in its height and width directions by 1.6 times. We
first do weighted RoI pooling in the tight box, where the
output of the standard RoI pooling in each cell is weighted
by the overlap ratio between the cell and the mask. This
generates the first type of mask features, encoding the shape
and the convolutional features covered by the mask. We
then perform the standard RoI pooling in the larger bound-
ing box. This second type of features captures the spatial
context cue of the mask and the target object. The final
object-mask descriptor is formed by concatenating the two
types of pooled mask features. Note that different from the
RoI pooling in object detection [11], we compute the mask
feature pooling on all convolution feature maps generated
by the base network (as shown in Figure 2), which allows
us to capture both local and global cues for predicting the
transformation. Figure 3 illustrates the dual mask feature
pooling process for a single level of feature maps.

Figure 3. The dual mask feature pooling pipeline in our FFD net-
work. Here only a single level of convolutional maps is shown.
Note that we use much finer grid partition than the standard RoI
pooling.

3.2. Free-Form Deformation Transformer

Given the object-mask descriptor, our second network
module predicts a 2D spatial transform to warp the initial
mask onto the target object. As the mask can have arbitrary
shapes, we adopt a rich family of spatial transforms, which
is capable of representing any non-rigid warping in image,
referred to as free-form deformation (FFD) [33].

The FFD defines a family of non-rigid spatial transfor-
mations based on a mesh of control points. By shifting
the control points and interpolating the dense deformation
based on B-splines [25], it provides a flexible tool to de-
scribe the non-rigid transformation between the mask and
object. Figure 4 shows an example of the deformation pro-
cess.

Formally, let Φ be a 2-D mesh of control points and
T : (x, y) 7→ (x′, y′) be a pointwise transformation of any
location (x, y) in target image F to the location (x′, y′) in



(a) Uniformly spaced control
points

(b) Deformation by shifting
the control points

Figure 4. Illustration of FFD defined on a binary mask. Left is the
original mask with uniformly spaced control points; Right is the
deformed mask with displaced control points.

the source image R. Given a mesh of control points φi,j
with uniform spacing δ pixels, the non-rigid transformation
T by B-spline functions is defined by

T(x,y) =

3∑
l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m (1)

where i = bx/δc − 1, j = by/δc − 1, u = x/δ − bx/δc,
v = y/δ − by/δc, and Bl represents the l-th basis function
of cubic B-splines [25]:

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6, B3(u) = u3/6

From Equation (1), we note that the B-spline based FFD
is locally controlled as each control point φi,j affects only
its 4δ × 4δ neighborhood. This indicates that the FFD can
describe highly local transformation, which is required for
capturing the complex non-rigid deformations between the
mask and object. Additionally, the degree of non-rigid de-
formations can be controlled by changing the resolution of
the mesh of control points Φ. A larger spacing of control
points allows modelling of global and coarse deformations,
while a small spacing of control points allows modelling of
local and fine-grained deformations.

By shifting the locations of the control points from the
uniform grid φi,j to φi,j + ∆φi,j , the B-spline based FFD
generates a non-rigid transformation as follows:

T(x,y) =

3∑
l=0

3∑
m=0

Bl(u)Bm(v)(φi+l,j+m + ∆φi+l,j+m)

(2)
In this work, we parameterize the FFD by the offsets of
its control points {∆φi,j}, and our second network mod-
ule first regresses the control point offsets from the object-
mask descriptor. To achieve scale-invariance, we normalize
the offsets by the size of the initial mask. Our transform
regressor module consists of 3 fully connected (fc) layers
and its outputs are the offset vectors of every control point.

To obtain the warped mask, we follow a similar strategy
as the Spatial Transformer Network [18]. Given the pre-
dicted offsets, we compute the dense transformation accord-
ing to Equation (2). The transform T then generates a sam-
pling grid G, which is a set of points where the initial mask
should be sampled in order to produce the warped mask.
Next, a bilinear sampling layer takes the sampling grid and
the initial mask as inputs and produces the final warped
mask. We refer the reader to [18] for more details about the
bilinear sampling process, especially the back propagation
of the loss through the sampling mechanism.

We note that for the FFD transformer network, the gra-
dients of loss L with respect to ∆φi,j can be computed by:

∂L

∂∆φi,j
=
∂L

∂G
· ∂G

∂∆φi,j

=
∂L

∂G
·

3∑
l=0

3∑
m=0

Bl(u)Bm(v)

(3)

where
∂L

∂G
is the gradients of loss Lwith respect to the sam-

pling grid G. This equation shows that given
∂L

∂G
,

∂L

∂∆φi,j
can be computed efficiently by convolution, with the filter
weights as Bl(u)Bm(v) and the stride being the spacing
of control points δ. The differentiable property of the FFD
transformer network allows loss gradients to flow back to
the feature maps, which enables us to train the network in
an end-to-end fashion.

3.3. Network Details and Training

Network Architecture. We use ResNet-101 [13] pre-
trained on the ImageNet dataset [9] for image classification
task as our base net to learn the feature representation. We
remove all the layers on top of res4b22 bracnch2a relu, as
the output from these layers are not used in our system.

For the mask feature pooling, we select a 30×30 grid for
computing the feature on the feature maps output from layer
conv1 relu (64 channels) and layer res2c relu (256 chan-
nels), and a 20 × 20 grid for layer res3b3 branch2a relu
(128 channels) and layer res4b22 bracnch2a relu (256
channels). We discover that the high resolution of the
pooling grid is important for training the network, as the
non-rigid transformations to be learned by the network are
highly complex, which need quite discriminative and fine
features to represent them.

As the mask features pooled from different layers are
of different spatial sizes and channel depths, we first fully
connect each set of them into a low dimensional output of
size 128 and then concatenate all the outputs together to
form a feature vector of size 512. Next are another two
fc layers for predicting the offsets of the control points.
The weight sizes of these two fc layers are 512 × 512 and



512× 2× 13× 13 respectively, which means the resolution
of the mesh of control points is 13× 13 in our experiments.
All the fc layers except the last one are followed by a ReLU
layer and a dropout layer.

Training Examples. To build the set of training examples,
we select those segment proposals who have an IoU with
the ground truth greater than 0.5 as the training samples.
Specifically, for a qualified segment proposal, we crop it
with a larger box whose size is 1.6× to the tight box that
encloses the segment in terms of height and width, so that
the cropped region can cover more of the ground-truth ob-
ject mask. We also use this large box to crop corresponding
ground-truth mask as this region’s ground truth.

Learning Details. We train the network to simply minimize
the L2 loss between the candidate’s mask and the ground
truth’s, which we find is robust and effective. We adopt an
image-centric training policy [11]. In our system, the mini-
batch size is 1 and for every image we randomly sampled
128 training segments. Except the ResNet layers, the extra
fc layers are initialized randomly from Gaussian distribu-
tion. We train the network for 10 epochs using a momen-
tum of 0.9 and weight decay of 0.002. The learning rate we
use for each epoch gradually decreases from 10−4 to 10−7

evenly in the log space.

4. Experiments
We apply our FFD network to the segment proposal re-

finement task in which we intend to improve a set of object
segment proposals generated from state-of-the-art methods.
We evaluate the performance of our approach on three pub-
lic datasets: Cityscapes [4], PASCAL VOC 2012 [10, 12]
and MSCOCO [26],

4.1. Evaluation Metrics and Protocols

For performance evaluation, we compute the average re-
call (AR) [15] between IoU 0.5 and 0.95 for a fixed number
of segment proposals. The AR metric describes the overall
quality of object proposals and has been shown to correlate
highly with the detection accuracy in [15]. Additionally, we
report the recall versus IoU threshold for different number
of proposals.

On the Cityscapes dataset, we split the training set into
two subsets: one for training (2,614 images) and the other
for validation (361 images taken at Tubingen, Ulm and
Zurich). We report our results on the original validation
set (500 images) for evaluation as the test server does not
provide the evaluation for segment proposals. For the PAS-
CAL VOC dataset, we train our network on the training set
(5,623 images) and evaluate on the validation set (5,732 im-
ages). We use the instance-level segmentation annotations
from [12]. For the MSCOCO dataset, we follow the same
protocol as in SharpMask [29].

Method AR@10 AR@100 AR@1000

MNC-r 0.052 0.131 0.180
MNC 0.041 0.102 0.136
SharpMask-r 0.103 0.175 0.215
SharpMask 0.085 0.141 0.171
DeepMask 0.082 0.138 0.164
MCG 0.016 0.046 0.091

Table 1. Quantitative results of segment proposal refinement on
Cityscapes: AR at different number of proposals (10, 100 and
1,000).

To demonstrate the generality of our method, we conduct
our Cityscapes and PASCAL VOC experiments with two
different sets of initial object segments, which are generated
from the state-of-the-art segment proposal generation meth-
ods, SharpMask [29] and MNC [8], respectively. For each
type of initial segments, we train our model from scratch
with a set of selected segment proposals from the initial
pool. However, when training the network with SharpMask
proposals on the PASCAL VOC, we find that it is difficult
for the network to converge, which might be due to much
fewer training segments and their sparse spatial distribution.
So for that case, we fine-tune the network that has been
trained for MNC proposals on the PASCAL VOC. On the
MSCOCO, we only report our experiment with the Sharp-
Mask proposals.

4.2. Results

4.2.1 Cityscapes

In Fgure 5(a), we first report the AR performances of the re-
fined segment proposals (MNC-r and SharpMask-r), and
compare the performance of our method against the orig-
inal proposal methods as well as other baselines (Deep-
Mask [28] and MCG [30]) on the Cityscapes. We can see
that our FFD network can improve the quality of the ini-
tial segment proposals by a significant margin. Specifically,
with 1,000 proposals, our FFD network increases the AR
of MNC and SharpMask from 0.136 to 0.180 (32.4% im-
provement) and from 0.171 to 0.215 (25.7% improvement),
respectively. More detailed quantitative results are shown
in Table 1.

Figure 5(b) and 5(c) show the recall versus IoU threshold
with 100 and 1,000 proposals respectively. They demon-
strate that our method can improve the proposals with dif-
ferent segmentation qualities on the Cityscapes dataset.

We further report some qualitative results in Figure 8.
These examples show that our FFD network is capable of
predicting non-rigid deformations for both local and global
warping, and produces better segmentation for the target ob-
jects with different scales and classes.
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Figure 5. Segment proposal refinement results on Cityscapes: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold with
different number of proposals.
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Figure 6. Segment proposal refinement results on PASCAL VOC: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold
with different number of proposals.

Method AR@10 AR@100 AR@1000

MNC-r 0.323 0.509 0.599
MNC 0.302 0.474 0.541
SharpMask-r 0.350 0.515 0.594
SharpMask 0.325 0.477 0.557
DeepMask 0.293 0.436 0.513
MCG 0.171 0.346 0.481

Table 2. Quantitative results of segment proposal refinement on
PASCAL VOC : AR at different number of proposals (10, 100
and 1,000).

4.2.2 PACAL VOC

We compare the AR performances of our method with other
baselines on the PASCAL VOC in Figure 6(a). It can
be seen that our FFD network further improves the qual-
ity of the segment proposals generated from both state-of-

the-art approaches. In particular, with 1,000 proposals, our
FFD network increases the AR of MNC and SharpMask by
10.52% (from 0.542 to 0.599) and 6.64% (from 0.557 to
0.594). More detailed quantitative results are shown in Ta-
ble 2. This demonstrates that our approach generalizes well
to other types of datasets.

Figure 6(b) and 6(c) show the recall versus IoU threshold
with 100 and 1,000 proposals respectively. We can see that
the refined proposals have better quality, as with high IoU
thresholds, e.g. 0.7, 0.8 and 0.9, the refined proposals have
much higher recall than the initial proposals.

Additionally, we include some qualitative examples in
Figure 9, which show that our FFD network produces a
wide range of refinements on object shapes. Some of these
results have a slightly better boundary alignment, while
the others achieve large improvements over the initial seg-
ments.
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Figure 7. Segment proposal refinement results on MSCOCO: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold with
different number of proposals.

Method AR@10 AR@100 AR@1000

SharpMask-r 0.179 0.327 0.416
SharpMask 0.160 0.298 0.387

Table 3. Quantitative results of segment proposal refinement on
MSCOCO : AR at different number of proposals (10, 100 and
1,000).

IoU Interval [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9)

mean PGIoU 0.548 0.648 0.749 0.849
mean RGIoU 0.665 0.737 0.796 0.861
Gain 21.35% 13.7% 6.28% 1.41%

Table 4. Statistics for the improvements in the quality of MNC
proposals with different initial IoU scores on PASCAL VOC. The
’mean PGIoU’ denotes the average IoU score of the original pro-
posals, while the ’mean RGIoU’ is the average IoU score of the
warped proposals.

4.2.3 MSCOCO

Figure 7(a) demonstrates the AR improvement for Sharp-
Mask proposals on the MSCOCO, while Tabel 3 shows
more detailed quantitative results. With 1,000 proposals,
our approach improve the AR by 7.49% (from 0.387 to
0.416). Figure 7(b) and 7(c) show the recall versus IoU
threshold with 100 and 1,000 proposals respectively. It is
clear that our method can achieve consistent improvements
on MSCOCO, and this demonstrates that our approach is
able to scale up to a larger number of object classes.

4.3. Ablation Study

In order to get more insight into our FFD network, we
analyze the IoU improvements for MNC segment proposals
with different IoU scores on the PASCAL VOC. We divide
the initial proposal set into 4 groups, which correspond to
the IoU intervals of [0.5, 0.6), [0.6, 0.7), [0.7, 0.8) and [0.8,

0.9). We then compute the mean IoU improvements for
each group after aligning the initial masks to their object
regions through the FFD network. The results are shown
in Table 4, from which we can see that our FFD network
is more effective in modeling relatively coarse transforma-
tions than capturing fine-level local deformations. Encod-
ing such fine-level misalignment between the object mask
and its groundtruth might require richer features and denser
control points.

We have also tried to learn a backward transformation
that transforms the groundtruth mask to the proposal mask.
Interestingly, we discover that the backward transformation
is much easier to learn, which can be explored further in
future work.

5. Conclusion
In this paper, we address the problem of object-mask reg-

istration and aim to align a shape mask to a target object
instance. To this end, we take a transformation based ap-
proach that predicts a 2D non-rigid spatial transform and
warps the shape mask onto the target object. In partic-
ular, we propose a deep spatial transformer network that
learns free-form deformations (FFDs) to non-rigidly warp
the shape mask based on a multi-level dual mask feature
pooling strategy. Our network is fully differentiable and
thus can be trained in an end-to-end manner. We evaluate
our FFD network on the task of refining a set of object seg-
ment proposals, and our approach achieves the state-of-the-
art performance on the Cityscapes, the PASCAL VOC and
the MSCOCO datasets.
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Figure 8. Qualitative results on Cityscapes. Red: original object mask. Green: aligned mask.

Figure 9. Qualitative results on PASCAl VOC. Red: original object mask. Green: aligned mask.



References
[1] J. Ashburner. A fast diffeomorphic image registration algo-

rithm. Neuroimage, 2007. 2
[2] J. Carreira, R. Caseiro, J. P. Batista, and C. Sminchis-

escu. Semantic segmentation with second-order pooling. In
ECCV, 2012. 2

[3] J. Carreira and C. Sminchisescu. Cpmc: Automatic ob-
ject segmentation using constrained parametric min-cuts.
TPAMI, 2012. 2

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016. 5
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