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Abstract—We present a street scene layout estimation method
based on transferring layout annotation from a (large) image
database and its application for distant object detection. Inspired
by nonparametric scene labeling approaches, we estimate a
scene’s geometric layout by matching global image descriptors
and retrieving the most similar layout configuration. Our label
transfer is done for each sub-region of an image and a tiered scene
model is used to integrate all the local label information into a
coherent scene layout prediction. Given the geometric layout, we
use a super-resolution method to zoom in the distance region
and refine the search in object detection. On KITTI dataset, we
show that we can reliably generate scene layout and improve the
detection of distant cars over the state of the art DPM detector.

I. INTRODUCTION

Geometric scene parsing, in which we segment a single
image into regions with pre-defined coherent geometric prop-
erties, has been an important task in scene understanding [9].
The parsing output provides a coarse-level description of
the geometric layout of the scene depicted in the image.
This layout information can be utilized to generate additional
image cues for other recognition tasks, and has been shown
beneficial effects on semantic scene labeling [6] and object
detection [10].

However, most existing approaches require segmenting
the input images into superpixels and training a superpixel
classifier to predict the local layout property. Despite that a
global model (i.e., random fields) is used to integrate the local
information and enforce the contextual consistency in a later
stage, the prediction solely from local regions is a difficult task
due to the ambiguity in image appearance. In addition, this
requires sufficient training data to cover different scenarios.

In this work, we propose a simple layout estimation method
based on the tiered scene model [4] and label transfer. Our
main idea is built on two insights: first, the local layout
predication can become easier if we work on a larger region
designed to reflect the overall scene structure; second, we can
avoid training local classifiers by transferring layout labels
from similar images [12], [14], [15].

Specifically, we focus on the outdoor street scene images
taken by a facing-forward car-mounted camera in this paper,
as shown in Figure 1. We make use of the regularity of street
scene to divide the image into uniformly-spanned columns and
matching those image columns based on image and (noisy)
geometric context similarity. We build a one-dimensional CRF
model on the layout boundary segments and use an efficient
dynamic programming to search the best configuration of
overall layout of the scene.

Fig. 1. Examples of street scene layout from KITTI dataset. The blue line
is the boundary between ’sky’ and ’vertical’ regions, and the red line is the
boundary between ’vertical’ and ’ground’ regions.

To demonstrate utility of the predicted scene layouts,
we use the layout information to address the challenges in
detecting distant objects, which are too small and lack details.
We take the layout as a guidance to choose a distance region in
the image and apply a super-resolution method [17] to recover
the details of the region. We then enhance the process of object
detection by re-applying an object detector to the zoomed-
in regions. We evaluate our method on a subset of KITTI
dataset [5], and the results show our method achieves the state
of the art layout prediction performance and object detection
results.

II. RELATED WORK

Scene understanding and object detection have attracted
much attention in recent years and there is a large number of
literatures. We will focus on only the most related works here.
We would refer the interested readers to the survey [11] and
for more detailed discussion.

The geometric layout estimation from a single image is
discussed in [9], where a superpixel based CRF model is used
to infer the local orientation of object surfaces. More recently,
Felzenszwalb et al. propose a tiered scene model and an
efficient dynamic programming based inference algorithm [4].
Other approaches use more advanced geometric primitives,
such as 3D blocks [8], or focus on building class [16], for
layout reasoning but has to resort to more complex inference
procedure. Unlike those methods, our method has a simpler
representation and also an efficient inference procedure.

Our data driven method is inspired by the recent nonpara-
metric label transfer approaches [15]. However, we do not use
superpixels [3], nor do we deform local patches to match target
images [12]. Our method is based on larger image regions for
retrieving similar image elements, which exploits the tiered
structure of street scenes.



Fig. 2. The column-based tiered scene model. We use ten columns and within
each column, the boundaries between different regions are linear segments.

Geometric information has been explored before for im-
proving monocular object detection [10]. In most cases, the
layout is used to constrain the search for a specific class based
on the common geometric or support relationship. Our method,
however, uses the geometric reasoning to identify the distant
area and enhances those regions so that small-sized objects can
be successfully detected.

III. OUR APPROACH

We will first introduce our scene model for geometric
layout estimation, which is based on a one-dimensional CRF
model. We then present our nonparametric label transfer for
the local layout prediction and a joint inference to estimate the
layout for the full scene. Given the scene layout, we propose
a zoom-based method to improve the detection of objects at
small scales.

A. Column-based tiered scene model

Given an image, we aim to infer a coarse layout of the
underlying scene. Specifically, we have a set of three main
geometric labels, including {sky, vertical, ground}, and our
task is to assign these labels to every pixel in the image.
To this end, we design a scene layout model with a tiered
structure [4] and piece-wise linear boundaries between regions
(See Figure 2). To be more specific, we partition the image
plane into K uniformly spanned columns P = {Pk} and each
column is segmented into three regions by two line segments
Lt
k and Lb

k. We assign the top, middle and bottom region by
the label sky, vertical and ground, respectively.

Mathematically, we consider modeling the boundary seg-
ments between two neighboring labeled regions in the entire
image. For clarity, we only describe the top boundary between
sky and vertical and the other boundaries are similar. As the
x positions of two ends of each line segment Lk are fixed,
we denote the line segment as lk = (yk,1, yk,2). We build the
following CRF on the boundary segments:

E(L, I) =

K∑
k=1

φ(lk, I) +

K−1∑
k=1

ψ(lk, lk+1, I), (1)

where φ is the unary term to capture the data consistency, and
ψ is the pairwise term for the smoothness of the boundary.
The main novelty of our method is to use data-driven method
to compute the unary term, which will be described in the
following.

B. Data-driven layout estimation

We want to transfer labeling information from a dataset of
images annotated with the coarse-level layout information. Our

Fig. 3. Input image (Top), original (Bottom left) and improved geometric
context (Bottom right) feature.

goal is to generate the unary term for the column-based tiered
scene model by nearest neighbor search. We adopt a two-step
strategy similar to [15]. We first describe how we find similar
images in the dataset.

1) Image candidate retrieval: We follow the nonparametric
scene parsing approach [15] and first retrieve a small set of
images that are similar to the target image. We use two feature
descriptors, one is the pyramid HOG (PHOG) [1] and the other
the geometric context (GC) feature [9]. For PHOG, we use the
Euclidean distance and for GC, we use the Hamming distance.

As the initial Geometric Context feature is noisy, we
propose a smoothing procedure to obtain a cleaner version
of the GC feature. Specifically, our procedure includes the
following steps.

• If there is a patch whose area is less than 50, then this
area should be reallocated.

• Ground region can only border vertical region; In other
words, sky region and ground region are not neighbors

• Due to position of camera, the angle view of camera
will be within a range. The ground region will take
up at one-sixth at every y value.

• Most of discontinuities of segmentation lines are
caused by the sudden change of trees and buildings.
Other causes are rare phenomenon.

Figure 3 shows an example of original and improved Geomet-
ric Context. We can see that our version is less noisy. Figure 4
shows two top candidates from the PHOG feature matching
and GC feature matching alone.

We explore each feature individually and find these two
types of features are complementary in retrieving similar image
candidates. The PHOG focuses more on the shape of the
scene layout and the GC encodes regional properties. We
combine both features to search the initial image candidates.
The distance between the target image Ir and an annotated
image Id in the dataset is defined as

D(Ir, Id) = ‖frPHOG − f tPHOG‖l2 + wd‖frGC − f tGC‖lHamm

(2)

where wd is the weight between two features.

Based on the distance in Equation (2), we retrieve M
nearest neighbors from the annotated dataset for the target



Fig. 4. Top two matches based on the PHOG feature (Top row) and improved
geometric context features (Bottom row). The target image is the same as in
Fig 3.

image, and denote them as C, i.e., candidate set for next step. In
this work, we use a linear search method while more advanced
approaches based on approximate nearest neighbor (ANN) [13]
can be used to improve the efficiency.

2) From similar image to similar column: Unlike [15], we
exploit the tiered structure of the street scene and represent the
entire scene as a set of columns instead of superpixels, as in
Section III-A. In the second step, we retrieve the most similar
columns from the candidate set C for each column in the target
image. The allows us to use more fine-level annotation in the
training set and accommodate variations in the data.

In this work, we set K = 10, which is small enough to
find sufficiently similar neighbors in terms of annotation. We
also use PHOG and GC features to retrieve similar columns
from the candidate set. An example of a single column and its
five nearest neighbors are shown in Figure 5. We can see that
they are very similar in their layouts.

Fig. 5. Left: Image column for retrieval.Right: Top five matches of columns
based on improved geometric context features (Red) and PHOG (Green).

To build the unary term in Equation (1), we find five
nearest neighbors for each column Pk based on PHOG feature
and another five based on GC feature. In total, we have 10
candidate columns for Pk and we use them as the state space
for the unary term φ(lk, I). In other words, we would like
to find the best annotation from those ten configurations. We
will use the global CRF model to find the most likely joint
configuration for the whole image.

To define the unary term, we rank the ten candidates based
on their matching scores. However, due to two different types
of features we use, we need to adjust their original ranking.
We use a small validation set (30 images) to find a global
re-ranking for these 10 candidates. Specifically, we compute
their performance in terms of the average error of the retrieved
annotation S = 1

30

∑
i ‖lrk−ldk‖2, where lrk is the target column

and ldi is the retrieved column. Then we re-rank them according

TABLE I. RE-RANKING OF TEN CANDIDATES

Avg error 1098.1 1278.8 1285.5 1327.1 1495.7
Re-rank 1 2 3 4 5

Orig rank 1 2 3 4 5
Avg error 1279.3 1619.6 1671.6 1801.8 1720.4
Re-rank 5 7 8 10 9

Orig rank 6 7 8 9 10

to their average performance. The detailed error cost and re-
ranking is shown in Table I. Note that the original ranking is
instance specific while the re-ranking is applied globally across
the dataset. Given the ranking, we define the unary term as
follows [7]

φ(li = k, I) = α log(rk), (3)

where rk is the ranking of the kth candidate.

C. Consistent global layout estimation

We define a pairwise potential function ψ(li, lj , I) to
impose the smoothness constraint on two consecutive columns.
Specifically, we prefer a smooth transition between the right
end of li and the left end of lj . In addition, the smoothing
should be modulated by the edge strength between line seg-
ments as shown in Figure 6. Let the edge strength be eij , the
pairwise term can be written as

ψ(li, lj , I) = β(eij)‖yi,2 − yj,1‖2, (4)

where β(eij) is a function of the edge strength. We define
β(eij) = 1 if eij < τ , and β(eij) = exp(−eij)+ γ otherwise.
γ is a bias term.

Fig. 6. Left: Discontinuity between two consecutive column is shown by the
black arrow; Right: Sobel edge response of the left image and thresh value is
set to 0.49.

To estimate the optimal joint configuration of L = {lk} for
all the columns P1, · · · , PK , we compute the MAP estimation
of the CRF in Equation (1):

L∗ = argmin
L
E(L, I)

= arg min
l1,··· ,lK

K∑
k=1

φ(lk, I) +

K−1∑
k=1

ψ(lk, lk+1, I) (5)

As our CRF has a chain structure, we use Dynamic Program-
ming to compute the global minimum of the energy function.

D. Layout guided object detection

The coarse-level scene layout provides useful information
for scene understanding and object detection. The region layout
label can eliminate unreasonable false positive detection of
a specific class, such as car, and guide more efficient and
thorough search in certain regions. For example, cars and
pedestrians normally are on the ground; therefore the locations



Fig. 7. The ground truth of the road surface from our annotation.

of cars and pedestrian should not be far from the ground region.
This would also improve the efficiency of all kind of detections
because classifiers can target on the particular region rather
than whole image.

In this work, we use car as an example to show how the
layout can be used to improve the detection of distant objects.
To improve car detection, we further introduce road surface as
another layer of layout information and implement a similar
label transfer procedure as described in the previous sections.
Figure 7 shows some examples of road annotation.

Once we obtain the layout and road labeling of an image,
our method exploits the scene geometry to enhance the image
region that is far away from the camera based on super-
resolution before applying the object detectors. It would be
very difficult to estimate the depth information of objects with
a single image. We assume the road boundaries are roughly
parallel and define a vanishing point in camera’s optical axis
direction. Given the location of vanishing point, we select a
rectangular window centered at the vanishing point and with
1/3 of the image height. The width of the window depends
on the two boundaries of road surface.

Essentially, we recover partial depth information from the
scene layout and selectively choose the distant region to
expand our search for car objects. While simple interpolation
can provide zoomed view of the region, we found it has certain
artefacts and may blurs object features. Instead, we then apply
a super-resolution method [17] to zoom this selected region
to three times larger than its original size. Figure 8 shows an
example of this pipeline. We can see that the super-resolution
step removes some artefacts and the zoomed image has more
fine-level gradient than the original. In the zoomed image, we
apply a pre-trained DPM detector to search the object at a
finer scale. Note that we also keep the detection results at the
original resolution and merge them together for the detections
on the entire image.

IV. EXPERIMENTS

A. Dataset and Setup

To evaluate our method, we build a dataset with our
own annotations from the KITTI dataset. The KITTI dataset
consists of images captured from the two high resolution
cameras installed on the car roof [5]. This dataset includes
scenes from CBD, rural areas and highways. We use a simple
random sampling method to get a representative subset from
the whole KITTI dataset.

We choose 200 images and use a random subset of 100
images for training and the rest of 100 images for testing. To
annotate the dataset, we divide each image into ten columns,
and use line segments to separate the sky, vertical and ground,
as well as the road within each column. We use grid search to

Fig. 8. Top Left: Comparison between the ground truth (red) and transferred
annotation (cyan). The black rectangle is the selected region for zooming.
Top Right: The image window extracted from the black rectangle before
super-resolution. Bottom Left: The image window after super-resolution (better
viewed on screen). Bottom Right: The result of car detection on image patches
after super-resolution.

determine all the parameters α, τ and γ in our models on a
validation set. On the detection task, we compare our method
with the DPM car detector on the original image. We use pre-
trained DPM detector on the PASCAL dataset [2].

B. Layout estimation results

We evaluate the coarse-level scene layout performance on
three classes, ’Sky’, ’Vertical’, and ’Ground’. Our method
is compared with the Geometric Context [9] as a baseline.
Table II shows the quantitative results on the test set. We
compute the pixel-level accuracy of the three classes on each
image and report the mean and standard deviation on the
whole test set. We can see that our method achieves better
performance on both measures. The potential reason is that we
impose stronger constraints on the layout, which can remove
many incorrect pixel labeling at superpixel level.

TABLE II. COMPARISON ON THE PER-IMAGE AVERAGE ACCURACY OF
THE LAYOUT ESTIMATION.

Method Region Avg Accu std
Sky 51.4 31.0

GC Vert 83.9 14.7
Gnd 77.1 11.1
Sky 76.9 14.9

Our Vert 85.9 11.5
Gnd 91.6 10.6

In addition, we show the confusion matrix of those two
methods in Table III. Again, we can see from the table that
our method can achieve much better pixel-level performance
on the entire dataset. We should some examples of both scene
layout and road estimation in Figure 9 and Figure 10. We find
that our method can recover the layout with good accuracy
in most cases, although it may oversmooth the boundaries
between different classes. We can also see that the road and
layout provide useful depth cues for identifying the distant
regions relevant for car detection.

TABLE III. COMPARISON ON THE OVERALL CONFUSION MATRIX OF
THE LAYOUT ESTIMATION.

GC Sky Vert Gnd
Sky 64.7 35.3 0.0
Vert 13.0 84.1 2.9
Gnd 2.4 20.0 77.5

Our Sky Vert Gnd
Sky 78.3 21.7 0.0
Vert 6.0 86.9 7.1
Gnd 0.0 7.5 92.5



Ground truth Our prediction Ground truth Our prediction

Fig. 9. Comparison between the ground truth and transferred layout. Red lines and green lines are the ground truth and transferred annotations respectively.

Ground truth Our prediction Ground truth Our prediction

Fig. 10. Comparison between the ground truth and transferred road label. Red lines and cyan lines are the ground truth and transferred annotations respectively.

C. Car detection results

We use the pre-trained DPM detector and set the threshold
to −0.62 to report the results in this work, which achieves
the best F-measure. The image window has size of 1200x560
after super-resolution. We show the number of true positives
(TP), false positives (FP), precision, recall and F-measure of
the baseline method and our method in Table IV. We can see
that our method achieves better performance overall. The true
positive of detected cars is approximately 1.5 times as many as
the original PASCAL model. The increase of F-score indicates
the improvement compared to the original PASCAL model.
While our precision slightly lower, our recall rate is much
higher than the baseline.

We also display some qualitative results in Figure 11. As
shown in the figure, the DPM classifier is able to detect cars
close to the camera, but unable to find any instance that is
far from the camera. The main reason is that it is hard to
detect small-scale car from the original image due to lack of
gradient information or constraints from the pre-trained model.
The super-resolution step provide sufficient details to enable

us to achieve better detection performance. The scene layout
makes it possible to select the distant regions to analyze.

TABLE IV. COMPARISON OF CAR DETECTION PERFORMANCE.

Method TP FP Precision Recall F-score
DPM 165 13 0.927 0.267 0.415
Ours 230 25 0.902 0.373 0.528

V. CONCLUSION

In this work, we present a data-driven approach to street
scene layout estimation and its application in detection of
distant objects. Our street layout model is based a simplified
column-like tiered scene model and we use retrieval-based
method to define the unary term of the corresponding CRF
model. We show that our approach can achieve better perfor-
mance than the state of the art. In addition, we infer the scene
geometry based on our layout estimation and find the image
region that is far away from the camera. We apply a super-
resolution step to zoom into those regions so that the object
detector can successfully find distant objects at small scales on



Road layout DPM detection (original) Zoomed region Our detection (zoomed)

Fig. 11. Comparison between the detection from DPM and our method. First column: Road and distant region estimation. Second column: DPM detection
results. Third column: distant region after super-resolution. Fourth column: our detection results.

the original image. We show that our improved detector has a
precision-recall rate superior to the DPM.
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