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Abstract

Boosting algorithms attract much attention in computer
vision and image processing because of their strong per-
formance in a variety of applications. Recent progress on
theory of boosting algorithms suggests a close link between
good generalization and the margin distrubtion of the clas-
sifier w.r.t. a dataset. In this paper, we propose a novel
data-dependent margin distribution learning criterion for
boosting, termed Laplacian MDBoost, which utilizes the in-
trinsic geometric structure of dataset. One key aspect of
our method is that it can seamlessly incorporate unlabeled
data by including a graph Laplacian regularizer. We de-
rive a dual formulation of the learning problem that can
be efficiently solved by column generation. Experiments on
various datasets validate the effectiveness of the new graph
Laplacian based learning criterion on both supervised and
unsupervised learning settings. We also show that the per-
formance of our algorithm outperforms the state-of-the-art
semi-supervised learning algorithms on a variety of induc-
tive inference tasks, including real world video segmenta-
tion.

1. Introduction
Boosting algorithms have achieved great popularity in

a spectrum of computer vision problems due to their good
generalization, robust performance, and intrinsic feature se-
lection mechanism. Despite their success, the classic Ad-
aBoost and its variants suffer from two disadvantages in real
world applications. First, the exponential loss and greedy
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nature of its learning algorithm tend to generate a classi-
fier with many weaker learners, which can be inefficient
and prone to overfitting. Also, boosting usually requires
a large number of training examples to achieve high accu-
racy. However, ground truth labeling is scarce and difficult
to obtain in practice.

Our work aims to address those issues within a unified
framework based on the margin distribution theory of boost-
ing [17, 15, 19]. One key observation is that the appeal-
ing properties of boosting are closely related to the mar-
gin distribution (MD) instead of solely the minimum mar-
gin [15] – which are commonly used in margin-based clas-
sification. It has been shown that the margin distribution
seems to play more important role in attaining better over-
all performance empirically and provides a tighter gener-
alization bound in theory [7, 15]. Therefore, several pa-
pers advocate optimizing MD-based criteria to improve the
test accuracy of boosting-like algorithms [11, 7, 18]. No-
tably, [18] proposed a totally corrective boosting, termed
MDBoost, to maximize the average margin while minimiz-
ing margin variance. The new boosting method achieves
competitive performance and faster convergence (i.e., fewer
weak learners) on several classification tasks.

However, while the additional margin variance provides
a better measure of the margin distribution, the overall cri-
terion is based on the second-order statistics only, and thus
lacks capacity of capturing finer-scale structure of the dis-
tribution. Inspired by manifold learning, we propose to im-
prove MDBoost by incorporating a local representation of
margin variance, in which only neighboring points on the
data manifold contribute to the variance computation. Intu-
itively, the data-dependent margin variance may give a bet-
ter description of the margin distribution. Due to its resem-
blance to the Laplacian Eigenmap [1], we refer to this new
boosting approach as Laplacian MDBoost.



More importantly, our learning criterion can be naturally
generalized to semi-supervised learning scenario. Given
both labeled and unlabeled data, we augment the supervised
learning criterion with a graph Laplacian-based regulariza-
tion term, which encourages the classifier outputs on unla-
beled data to satisfy the data manifold constraint. This com-
bined learning criterion provides a coherent framework and
admits a simple convex quadratic dual formulation such as
MDBoost. We employ a column-generation (CG) based op-
timization procedure to incrementally add informative weak
learners, yielding a boosting-like algorithm.

We empirically demonstrate that the supervised Lapla-
cian MDBoost is better than or comparable to AdaBoost(-
CG) [19], LPBoost [6] and MDBoost in terms of classifi-
cation performance on most UCI datasets [14]. In addition,
we design a set of semi-supervised learning tasks based on
UCI datasets and YouTube Celebrities Face datasets [9],
and compare the semi-supervised Laplacian MDBoost with
two recent approaches to learning from partially labeled
data: LLGC [23] and SemiBoost [12]. The results show
the semi-supervised Laplacian MDBoost outperforms the
baseline methods on most of datasets.

We organize the rest of our paper as follows. In next sec-
tion, we discuss the background and related work. Section 3
derive the supervised and semi-supervised Laplacian MD-
Boost based on the dual formulation of optimizing a novel
margin distribution cost. We demonstrate the performance
of our approach by comparing with several recent (semi-
)supervised boosting methods on UCI and video segmenta-
tion tasks in Section 4. Finally, Section 5 summarizes our
conclusion and discusses the future work.

2. Related Work
Boosting has attracted increasing attention in the ma-

chine learning community in the last ten years due to its
performance and efficiency in classification. One way of de-
ciphering the success of boosting lies in margin theory [17].
Several recent papers, such as LPBoost [6], adopt the min-
imum margin as an alternative learning criterion for boost-
ing. Ryyzin and Schapire [15] point out that the generaliza-
tion performance of boosting algorithms may depend more
on the margin distribution instead of the minimum margin.
Based on this observation, Shen et al. proposed MDBoost
(margin distribution boosting) and achieved promising clas-
sification performance by directly maximizing the average
margin and minimizing the margin variance [18]. Our work
extends the MDBoost so that higher-order statistics and un-
labeled data can be utilized to learn a better boosted classi-
fier.

There has been a large amount of literature in semi-
supervised learning and we refer the readers to the recent
book [4] for a comprehensive review. Generally, semi-
supervised learning methods can be categorized into either

transductive or inductive based on the nature of inference.
Transductive algorithms can only predict the labels of the
data seen during training. Typical approaches include label
propagation [24] and LLGC [23]. Inductive methods, on the
other hand, can be used to predict the labels of data that are
unseen during training, which includes co-training [2] and
SemiBoost [12] as examples. Our approach belongs to the
inductive category and is based on the “manifold assump-
tion” in Laplacian Eigenmaps [1].

Several work have extended supervised boosting algori-
thms to semi-supervised setting. Semi-supervised Margin-
Boost [3] generalizes the margin concept to unlabeled data,
and minimizes a margin-based loss by functional gradient
descent. Chen and Wang also minimize the margin-based
loss and introduce additional local smoothness into regular-
ization in the Regularized Boost [5]. SERBoost [16] aims
at scaling up to large dataset by using expectation regular-
ization. In SemiBoost[12], Mallapragada et al. boost any
supervised classifier by iteratively relabeling the unlabeled
data. Unlike those existing approaches, our algorithm opti-
mizes the margin distribution directly within a totally cor-
rective framework, while incorporating manifold regular-
ization on both labeled and unlabeled data coherently.

3. Our Approach

3.1. Margin Distribution and Laplacian MDBoost

We first review the key ideas of the margin distribu-
tion boost (MDBoost) in [18] and introduce some nota-
tions for formulating our Laplacian MDBoost. Let Dl =
{(xi, yi)}i=1,··· ,M be the training data set, where xi ∈ X
is the input feature vector and yi ∈ {−1,+1} is the output
label. Given the training data, our goal is to train a classifier
to assign binary label to any input vector x. In the setting
of boosting methods, the classifier consists of a weighted
combination of weak learners.

More specifically, denote h(·) ∈ H as a weak learner
that maps an input vector x into binary output. We assume
we choose K weak learners from the set H in our boosted
classifier, and define the matrix H ∈ ZM×K to be all the
possible predictions of the training data using weak classi-
fiers. That is, Hij = hj(xi) is the label ({+1,−1}) given
by weak classifier hj(·) on the training example xi. We
also use Hi: = [Hi1 Hi2 · · ·HiK ] to denote the i-th row
of H , which constitutes the output of all the weak classi-
fiers on the training example xi. Letα be the weight vector
for the weak learners. We can write the output of the final
classifier on any training data xi as Hi:α, and the so-called
(unnormalized) margin at data xi is defined as yiHi:α.

Based on the margin distribution theory of boosting,
MDBoost directly maximizes the average margin and min-
imizes the margin variance. Specifically, let ρi denote
the unnormalized margin for the ith example datum, i.e.,



ρi = yiHi:α, ∀i = 1, · · · ,M. The cost function and the
learning problem in MDBoost can be written as follows:

min
α

1

2(M − 1)

∑
i>j

(ρi − ρj)2 −
M∑
i=1

ρi

s.t. α < 0,1>α = D, (1)

whereD is a regularization parameter. By defining a matrix
A ∈ RM×M , where

A =


1 − 1

M−1 . . . − 1
M−1

− 1
M−1 1 . . . − 1
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...

...
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...
− 1

M−1 − 1
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 ,
the optimization problem can be rewritten into the following
form:

min
α

1
2ρ
>Aρ− 1>ρ,

s.t. α < 0,1>α = D,

ρi = yiHi:α,∀i = 1, · · · ,M. (2)

It has been shown [19] the problem in (2) can be efficiently
solved by considering its dual form, i.e.,

min
r,u

r + 1
2D (u− 1)>A−1(u− 1),

s.t.

M∑
i=1

uiyiHi: 4 r1>. (3)

The form of the dual problem allows us to incrementally
search the solution space by the column generation tech-
nique. At each iteration, we obtain a new weak classifier
through searching the most violated constraint:

h′(·) = argmax
h(·)

∑M
i=1 uiyih(xi). (4)

While the MDBoost learning cost incorporates the mar-
gin variance information, the global variance can be restric-
tive and cannot describe the finer structure of the distribu-
tion beyond the second order statistics. We propose to use
the “local” version of variance that considers the geometric
property of the data manifold. Specifically, we adapt the
concept of graph Laplacian of data manifold [1], and use
a data-dependent margin variance in the MDBoost learning
criterion:

min
α

1

2(M − 1)

∑
i>j

wij(ρi − ρj)2 −
M∑
i=1

ρi

s.t. α < 0,1>α = D, (5)

where wij = exp(
−||xi−xj ||2

t ) is defined on a neighbor-
hood graph. We refer to the new learning problem in (5) as
Laplacian MDBoost.

Note that if we define the matrix A = {Aij} by the fol-
lowing terms,

Aij =

{
wij , if i 6= j,∑M

k=1,k 6=i wik, if i = j,
(6)

then we can derive new primal and dual problems with the
same form as in (2) and (3). The dual problem can be solved
with a column generation method such as in MDBoost. We
notice that both MDBoost and Laplacian MDBoost in their
dual form are regularized hard-margin LPBoost, but have
different types of regularizer.

3.2. Semi-supervised Laplacian MDBoost

The main idea in Laplacian MDBoost, which makes use
of the geometric property of data distribution, can be natu-
rally extended to semi-supervised learning setting. Assume
we have an additional unlabeled data set Du = {xi, i =
M+1, · · · , N} and would like to use it to help improve the
classification performance. Similar to [1], we incorporate
a graph Laplacian-based regularization term into our objec-
tive function, which imposes a smoothness constraint over
the class output on the unlabeled data w.r.t. the empirical
estimate of data manifold structure.

Given a neighborhood graph defined on the dataset, we
can define the graph Laplacian as L = D −W where W
is a N × N matrix and wij = exp(

−||xi−xj ||2
t ), if xi and

xj are adjacent and zero otherwise. D is a diagonal de-
gree matrix given by Dii =

∑
i wij . A smoothness regu-

larization term on the class output f(x) can be written as
f tLf =

∑n
i,j=1(f(xi)− f(xj))

2wij .
In Laplacian MDBoost, the class prediction f(xi), de-

noted by fi, is the combined prediction of all weak clas-
sifiers for the ith example datum, i.e. fi = Hi:α, ∀i =
1, · · · ,M. By adding the smoothness penalty as a regular-
ization term into the primal objective function, we derive
the following learning criterion for semi-supervised Lapla-
cian MDBoost:

min
α

∑
i>j wij(ρi − ρj)2

2(M − 1)
+ C

∑
i>j

wij(fi − fj)2 −
M∑
i=1

ρi

s.t. α < 0,1>α = D, (7)

where D is also a regularization parameter as in (1). Here
we have two quadratic terms: the first one corresponds to
the margin variance of labeled data, while the second is the
smoothness penalty on all data (including the labeled and
unlabeled). C is the tradeoff parameter between the two
terms.



Denote A1 as the matrix defined in (6) on all the data
points (including labeled and unlabeled), and A2 as the
M ×M upper left corner of A1 (suppose the data is sorted
that the labeled data are the first M elements when defin-
ing the graph Laplacian), our optimization problem can be
rewritten into a concise form:

min
α

C′

2 f
>A1f + 1

2ρ
>A2ρ− 1>ρ,

s.t. α < 0,1>α = D,

ρi = yiHi:α,∀i = 1, · · · ,M,

fi = Hi:α,∀i = 1, · · · , N. (8)

where M refers to the number of labeled examples, while
N is the number of all (labeled and unlabeled) examples.
C ′ is equivalent to C up to a constant.

Notice that the new semi-supervised Laplacian MD-
Boost objective has a similar form to the supervised version,
thus we can derive its dual formulation as follows. The La-
grangian of the convex optimization problem in (8) is writ-
ten as

L(α,ρ,f ,u,v, r, q)

= C′

2 f
>A1f + 1

2ρ
>A2ρ− 1>ρ+ r(1>α−D)− q>α

+
∑M

i=1 ui(ρi − yiHi:α) +
∑N

i=1 vi(fi −Hi:α), (9)

with q < 0. The infimum of L w.r.t. to the primal variable
can be computed as

inf
ρ,f ,α

L = inf
f

[
C′

2 f
>A1f + v>f

]
+ inf

ρ

[
1
2ρ
>A2ρ+ (u− 1)>ρ

]
−Dr (10)

+ inf
α

[
(r1> − q> −

∑M
i=1 uiyiHi: −

∑N
i=1 viHi:)α

]
.

Clearly, r1>−q>−
∑M

i=1 uiyiHi:−
∑N

i=1 viHi: = 0 must
hold in order to have a finite infimum. Therefore, we have∑M

i=1 uiyiHi: +
∑N

i=1 viHi: 4 r1>. (11)

For the first and second term in (10), the gradient must van-
ish at the optimum:

∂
[
C′

2 f
>A1f + v>f

]
∂fi

= 0, ∀i = 1, · · · , N. (12)

∂
[
1
2ρ
>A2ρ+ (u− 1)>ρ

]
∂ρi

= 0, ∀i = 1, · · · ,M. (13)

This leads to f = −A−11 v; and ρ = −A−12 (u− 1) and the
infimum is −C′

2 v
>A−11 v − 1

2 (u− 1)>A−12 (u− 1).
By substituting the results back to (10), we can write the

dual problem as:

max
r,u,v

− r − 1
2D (u− 1)>A−12 (u− 1)− C′

2 v
>A−11 v,

Algorithm 1: Column generation based Semi-
supervised Laplacian MDBoost.

Input: labeled training data (xi, yi), i = 1 · · ·M ;
unlabeled training data xi, i =M + 1 · · ·N ;
termination threshold ε > 0; regularization
parameter D; maximum number of iterations
Tmax.

Initialization: N = 0; α = 0; ui = 1
M , i = 1· · ·M ;

and vi = 1
N , i = 1· · ·N .

for iteration = 1 : Tmax do
1. Obtain a new base h′(·) by solving (15);

2. Check for optimal solution:
if
∑M

i=1 uiyih
′(xi) +

∑N
i=1 vih

′(xi) < r + ε,
then break and the problem is solved;

3. Add h′(·) to the restricted master problem, which
corresponds to a new constraint in the dual problem;

4. Solve the dual problem (14) and update r, ui
(i = 1 · · ·M ) and vi (i = 1 · · ·N ).

5. Count weak classifiers T = T + 1.

end
Output:

1. Compute the primal variable α from the optimality
conditions and the last solved dual problem
(primal-dual interior point methods produce α in the
meantime);

2. The final strong classifier is
H(x) = sign

(∑N
j=1 αjhj(x)

)
.

s.t. (11). (14)

We employ a similar column generation strategy to induce
weak learners incrementally. At each iteration, we choose a
weak learner that violates the constraint most:

h′(·) = argmax
h(·)

M∑
i=1

uiyih(xi) +

N∑
i=1

vih(xi). (15)

We summarize the proposed algorithm in Algorithm 1.

4. Experimental Evaluation
In this section, we evaluate the performance of Lapla-

cian MDBoost and Semi-supervised Laplacian MDBoost
by conducting a set of experiments on synthetic and real
world datasets. We first present a comparison between
the proposed Laplacian MDBoost and several most widely-
used supervised boosting algorithms. Following that, we
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Figure 1. Average test error (with standard deviation) of AdaBoost, AdaBoost-CG, LPBoost, MDBoost and Laplacian MDBoost on 13
UCI benchmark datasets.

design a benchmark of semi-supervised inductive inference
tasks by removing certain ratio of training data labels in
UCI datasets. We test the proposed Semi-supervised Lapla-
cian MDBoost against two baseline approaches, including
LLGC[23] combined with MDBoost and SemiBoost[12].
Finally, we apply our semi-supervised method and two
baselines to an object segmentation in video task.

4.1. Datasets and Setup

The first set of our experiments is based on the 13 UCI
benchmark datasets from [14]1. For supervised learning
setting, we randomly split each of the UCI datasets into
3 subsets. 60% of the samples are used for training; 20%
for cross validation and the rest for testing. For the larger
datasets (ringnorm, twonorm and waveform), we ran-
domly select 10% for training, 30% for cross validation and
60% for testing. All experiments are run 30 times for accu-
racy.

We choose the model hyperparameters by cross valida-
tion. The parameter D for AdaBoost-CG and all algorithms
in the MDBoost family are chosen from {2, 5, 10, 20, 40,
70, 100, 150}. The search range of coefficient C for Semi-
supervised Laplacian MDBoost and combining LLGC with
MDBoost are set to {−3, −2, −1, −0.75, −0.5, −0.25, 0,
0.25, 0.5, 0.75, 1, 2, 3} in negative log scale. The trade-off
parameter C for LPBoost[6] are chosen similarly. For the
graph Laplacian, we let t be proportional to the variance of
data and normalize all feature values to [−10,+10]. We set
parameters of LLGC and SemiBoost to their respective op-
timal values given by [23] and [12]. For simplicity, we use
decision stumps as weak learners in all tests and limit the
maximum number of iterations Tmax to 1000 (note that all
totally-corrective boosting algorithms converge earlier than
100 iterations). The convergence threshold ε are uniformly
set to 10−5.

To evaluate the performance of Semi-supervised Lapla-
cian MDBoost on real-world applications, we also choose
a subset of the YouTube Celebrities Face Tracking and

1http://ida.first.fraunhofer.de/projects/bench/

Recognition Dataset[9], which includes 6 sequences, and
apply our method to a semi-supervised object segmentation
task.

4.2. Laplacian MDBoost for Supervised Learning

To demonstrate the effectiveness of the new Laplacian
MDBoost learning criterion, we first test our algorithm in
a fully-supervised learning setting. The performance of
Laplacian MDBoost is compared with four other boosting
algorithms, namely AdaBoost, AdaBoost-CG, LPBoost and
MDBoost. The experiments are run on 13 UCI benchmark
datasets for 30 times, and average test error with standard
deviation are reported in Fig. 1. As we can see, Laplacian
MDBoost outperforms its opponents in most cases. This re-
sult confirms our intuition and show that local variance is
effective in representing the margin distribution.

4.3. Semi-supervised Laplacian MDBoost

We first evaluate the Semi-supervised Laplacian MD-
Boost on a set of partially labeled datasets derived from UCI
benchmark. In this experiment, we followed the setup in
Sec. 4.1 and choose randomly 10% of the original training
data to keep their labels, while manually removing the la-
bels of the other 90%. Our approach is compared with two
other state-of-the-art semi-supervised algorithms: LLGC
and SemiBoost. LLGC is widely used in different applica-
tions as a transductive algorithm [22, 13]. In contrast, Semi-
Boost is an inductive yet effective alternative [8, 10]. Note
that LLGC is transductive so it does not by default offer
the capability for predicting labels unseen during training.
Therefore we combine it with MDBoost, by using LLGC
first to predict the “fill-in” labels of unlabeled training data,
then cascading with MDBoost as if all training data are
labeled. For data with “fill-in” labels, we use a cross-
validated coefficient during reweight sampling to limit their
impact. This method effectively uses LLGC as a mean of
manifold regularization while Laplacian MDBoost uses a
Laplacian Eigenmap instead.

The results are summarized in Table 1. In 9 out of 13
datasets, utilizing unlabeled data helps to improve test per-

http://ida. first. fraunhofer. de/projects/bench/


Table 1. Test error and standard deviation (in percentage
%) of Laplacian MDBoost (using only labeled data), Semi-
supervised Laplacian MDBoost (SemiLap-MDBoost), Learning
with Local and Global Consistency combined with MDBoost
(LLGC+MDBoost), and SemiBoost on UCI datasets.

Laplacian SemiLap- LLGC+ SemiBoost
MDBoost MDBoost MDBoost

banana 57.1± 4.8 41.6± 3.2 51.5± 7.4 41.7± 2.3
b-cancer 38.5± 14.2 31.4± 9.1 34.7± 9.2 33.3± 9.4
diabetes 36.7± 14.6 30.1± 4.8 30.7± 4.5 32.9± 11.7
f-solar 46.3± 9.3 44.5± 7.9 49.0± 9.6 43.9± 8.6
german 39.5± 16.1 31.6± 3.4 31.4± 3.4 32.4± 3.3
heart 29.5± 8.7 32.5± 8.1 35.6± 8.8 40.4± 9.1
image 34.2± 10.4 28.5± 1.9 35.7± 2.7 34.0± 3.4
ringnorm 51.9± 10.0 38.0± 1.7 38.6± 2.3 40.1± 5.3
splice 36.5± 28.1 25.8± 3.7 26.4± 3.9 26.2± 5.8
thyroid 22.8± 7.3 23.5± 5.1 25.3± 5.4 25.0± 7.4
titanic 52.0± 12.2 49.7± 13.3 53.3± 14.0 50.7± 16.4
twonorm 18.1± 5.1 29.8± 5.7 30.0± 5.5 33.4± 5.3
waveform 19.7± 2.6 23.4± 3.5 25.1± 3.7 25.8± 3.7

formance, among which Semi-supervised Laplacian MD-
Boost is leading in 6 cases, showing the superior inductive
inference performance.

Another interesting problem which will naturally arise is
the performance gain under different ratios of labeled data.
We present the results in Fig. 2, where the labeled data ratio
changes from 10% to 100% with a step of 10%. We can see
from the figure that, with limited labeled data and abundant
unlabeled data, Semi-supervised Laplacian MDBoost sig-
nificantly outperforms Laplacian MDBoost. However, with
more unlabeled data turn into labeled, the performance gain
decreases and the error rates converge at a same level. This
is reasonable if we look at the objective function in Eq. 7.
When there are little (or no) unlabeled data, the value of
the second term will approach (or equal to) zero, making it
close (or equal) to Eq. 5.

4.4. Video Segmentation with Semi-supervised
Laplacian MDBoost

In this section, we apply our semi-supervised Lapla-
cian MDBoost to an object segmentation in video problem.
We randomly choose 6 video sequences from the YouTube
Celebrities Face Tracking and Recognition Datasets[9]. For
each sequence, we extract 15 consecutive frames. The first
10 frames are used for training and the last 5 frame for test-
ing. The overall task is to accurately detect and label human
face in each frame in a pixel-wise manner.

To facilitate the labeling task, we first apply a frontal
face detector [21] to find a bounding box for human face
as in Fig. 3. This would approximately guarantee that the
face is in the center of the box while non-face located at
the edges. Within the box we perform a segmentation [20]
for superpixels. Each superpixel is then considered a ba-
sic input vector (datum) for the semi-supervised algorithms.
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Figure 2. Performance of Laplacian MDBoost (dash-dot line) and
Semi-supervised Laplacian MDBoost (solid line) on UCI datasets
banana (green), ringnorm (blue) and splice (red).

Next, an automated training strategy were adopted to train
the semi-supervised algorithms. The superpixels in the cen-
ter of the bounding box (within a 20 pixel range) are labeled
positive (face) while the superpixels on the brim labeled
negative (non-face). Two examples are shown in Fig. 3.
The green areas are labeled positive in training while the
blue ones are negative. All other superpixels in between
are treated as unlabeled training data. This automated train-
ing process eliminates the need for manually labeling the
ground-truth (which can be a tedious task in real world ap-
plications), while also generates a more challenging task for
classification. We use color and position histograms as fea-
ture vectors.

Fig. 3 visualizes the test results of Semi-supervised
Laplacian MDBoost, LLGC+MDBoost and SemiBoost on
the two datasets. The performance difference is greater
in the second case because the test frames involve a pose
change which is likely to cause failure to the baseline clas-
sifiers. In both examples, Semi-supervised Laplacian MD-
Boost presents the best labeling performance visually. Full
test results are reported in Table 2. In all 6 video sequences,
Semi-supervised Laplacian MDBoost is the best in 5 cases
in terms of test error, although SemiBoost is better at train-
ing error. This may imply that the baseline is prone to over-
fitting on these datasets.

5. Conclusion

In this paper, we have proposed a novel semi-supervised
boosting algorithm based on the high performance margin
distribution boosting. Inspired by Laplacian Eigenmaps,
we use the graph Laplacian as an effective means of mani-
fold regularization on both labeled and unlabeled data. Like
MDBoost, the algorithm is totally-corrective and a column
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Figure 3. An illustration for video segmentation with three different semi-supervised algorithms: Semi-supervised Laplacian MDBoost
(SemiLap-MDBoost), Learning with local and global consistency combined with MDBoost (LLGC+MDBoost) and SemiBoost. The
video data are sequences 0370 and 0950 from the Youtube Celebrity Face Tracking and Recognition datasets[9].

Table 2. Average test and training error (in percentage %) of Semi-
supervised Laplacian MDBoost (SemiLap-MDBoost), Learning
with Local and Global Consistency combined with MDBoost
(LLGC+MDBoost), and SemiBoost on the YouTube Celebrities
Face Tracking and Recognition Datasets over 10 tests.

test error training error

0146 Al Pacino
SemiLap-MDBoost 13.7± 2.1 5.9± 1.2
LLGC+MDBoost 15.4± 2.4 5.5± 1.1
SemiBoost 19.8± 3.2 4.2± 0.6

0370 Bill Clinton
SemiLap-MDBoost 11.1± 1.6 10.5± 1.7
LLGC+MDBoost 16.8± 2.0 8.5± 1.0
SemiBoost 22.5± 2.2 10.7± 1.3

0564 Donald Trump
SemiLap-MDBoost 7.2± 2.1 4.3± 0.6
LLGC+MDBoost 16.8± 3.2 3.9± 0.7
SemiBoost 18.5± 4.7 3.5± 0.3

0727 Harrison Ford
SemiLap-MDBoost 12.6± 2.4 4.9± 0.3
LLGC+MDBoost 15.3± 2.3 6.1± 0.5
SemiBoost 11.5± 1.9 5.5± 0.3

0935 Jennifer Lopez
SemiLap-MDBoost 16.5± 3.2 11.5± 2.4
LLGC+MDBoost 16.9± 2.9 10.2± 1.7
SemiBoost 20.2± 4.1 6.4± 1.0

0950 Jennifer Lopez
SemiLap-MDBoost 19.8± 2.1 9.8± 2.2
LLGC+MDBoost 29.1± 3.8 14.2± 2.9
SemiBoost 28.3± 3.5 7.9± 1.2

generation based optimization technique is used to facilitate
minimizing the objective function.

The proposed Semi-supervised Laplacian MDBoost,
along with its supervised version, exhibits promising in-
ductive performance in a variety of tasks including classi-
fication on real data and video segmentation. Our experi-
ments show that Semi-supervised Laplacian MDBoost out-
performs LLGC and SemiBoost in terms of classification
accuracy.

Like almost all other semi-supervised classification alg-
orithms, Semi-supervised Laplacian MDBoost is currently
a two-class algorithm. We are exploring the possibility to a
multiple class extension by introducing new similarity mea-
sures. We also want to test our algorithm on more practical
applications to further explore the strength of graph Lapla-
cian on different intrinsic geometric structures. One possi-
ble extension is to add more methods for manifold regular-
ization to adapt to different manifold assumptions.
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