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Abstract

In this paper, we tackle the problem of estimating the
depth of a scene from a single image. This is a challeng-
ing task, since a single image on its own does not provide
any depth cue. To address this, we exploit the availability
of a pool of images for which the depth is known. More
specifically, we formulate monocular depth estimation as a
discrete-continuous optimization problem, where the con-
tinuous variables encode the depth of the superpixels in
the input image, and the discrete ones represent relation-
ships between neighboring superpixels. The solution to this
discrete-continuous optimization problem is then obtained
by performing inference in a graphical model using parti-
cle belief propagation. The unary potentials in this graph-
ical model are computed by making use of the images with
known depth. We demonstrate the effectiveness of our model
in both the indoor and outdoor scenarios. Our experimen-
tal evaluation shows that our depth estimates are more ac-
curate than existing methods on standard datasets.

1. Introduction

In this paper, we address the problem of scene depth es-
timation from a single image. Estimating the depth of a
general scene from a monocular, static viewpoint is a very
challenging task, since no reliable cues, such as stereo cor-
respondences, or motion, can be exploited.

In recent years, much progress has been made towards
accurate 3D scene reconstruction from single images. For
instance, simple geometric assumptions (i.e., box models)
have proven effective to estimate the layout of a room [9,
17, 27]. Similarly, for outdoor scenes, the Manhattan, or
blocks world, assumption has been utilized to perform 3D
scene layout estimation [7]. These box models, however,
are limited to represent simple structures, and are therefore
ill-suited to obtain detailed 3D reconstructions.
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Figure 1. Depth estimation from a single image: Input images and
depth maps estimated by our method.

In contrast, several methods have been proposed to di-
rectly estimate the depth of image (super)pixels [24, 25]. In
this context, it was shown that exploiting additional sources
of information, such as user annotations [22], semantic la-
bels [18], or the presence of repetitive structures [30], could
help improving reconstruction accuracy. Unfortunately,
such additional information is not available in general. Re-
cently, nonparametric approaches were therefore introduced
to handle this case [13, 15, 16]. Given an input image, these
approaches proceed by retrieving similar images in a pool
of images for which the depth is known. The depths of the
retrieved candidates are then employed in conjunction with
smoothness constraints to estimate a depth map. While this
has achieved some success, as suggested in [31] in the con-
text of stereo, the gradient-aware smoothing strategy often
poorly reflects the real 3D scene observed in the image.

In this paper, we introduce a method that addresses this
issue by modeling depth estimation as a discrete-continuous
optimization problem. In particular, in addition to the stan-
dard continuous variables that encode the depth of the su-
perpixels in the input image, we make use of discrete vari-
ables that allow us to model complex relationships between
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neighboring superpixels. Depth estimation can then be ex-
pressed as inference in a higher-order, discrete-continuous
graphical model.

More specifically, given an input image, we make use
of a nonparametric approach to retrieve similar images in
a dataset of images with known depth. We exploit the
depths of these images to construct data terms for the con-
tinuous variables in our model. Furthermore, we employ
discrete variables to encode the occlusion relationships be-
tween neighboring superpixels. The interactions of several
discrete variables can then be expressed with junction po-
tentials, which define invalid configurations. These discrete
occlusion variables also let us define smoothness constraints
that better reflect realistic scenes. We make use of particle
belief propagation [12, 20] to perform inference in the re-
sulting higher-order, discrete-continuous graphical model.

In contrast to most existing methods which typically con-
sider either indoor scenes, or outdoor ones, we demonstrate
the effectiveness of our model in these two scenarios. Our
experiments show the benefits of our discrete-continuous
formulation, which yields state-of-the-art accuracies on the
NYU v2 indoor scenes dataset [28] and on Make3D [25].

2. Related Work
Estimating the depth of a scene from images is one of

the major goals of computer vision. Therefore, it has at-
tracted a lot of attention over the years. Here, we focus on
the advances that have been made in the recent years.

A classical approach to reconstructing 3D scenes con-
sists in exploiting video. In this context, 3D scene flow is
one of the most popular and mature approaches to depth
estimation [3, 4, 29]. Similarly, structure-from-motion [5]
and SLAM [19] have now reached the stage where exist-
ing systems can efficiently handle huge amounts of images.
Therefore, they are now being integrated into 3D scene un-
derstanding methods that jointly detect, or segment objects
while performing 3D reconstruction [6, 8, 23]. While here
we tackle the monocular, static case, it was shown that the
depth maps obtained from single images could also have a
beneficial impact on video-based 3D reconstruction [13].

When it comes to single images, 3D reconstruction
methods have not yet attained the same degree of maturity
as video-based techniques. Nonetheless, much progress has
been made in recent years. In particular, for indoor scenes,
effective techniques have been proposed to estimate the lay-
out of rooms. These methods typically rely on box-shaped
models, and try to fit the box edges to those observed in the
image [9, 17, 27]. The same simple geometric prior, blocks
world, was exploited in outdoor scenes [7]. In [10], a more
accurate geometric model was employed, but the results re-
main only a rough estimate of surface normals.

The simple geometric models described above do not al-
low us to obtain a detailed 3D description of the scene. In

contrast, several methods have proposed to directly estimate
the depth of image (super)pixels. Since a single image does
typically not provide enough information to estimate depth,
other sources of information have been exploited. In par-
ticular, in [22], depth was predicted from user annotations.
In [18], this was achieved by making use of semantic class
labels. Alternatively, the presence of repetitive structures
in the scene was also employed for 3D reconstruction [30].
With the recent popularity of depth sensors, sparse depths
have also been used to estimate denser depth maps [2].

In this work, however, we focus on the scenario where no
such sources of information are available. In this setting, su-
pervised learning techniques were the first to provide real-
istic results by learning the parameters of a Markov random
field [24, 25]. More recently, several nonparametric ap-
proaches were introduced [13, 15, 16]. These methods ex-
ploit the availability of a set of images for which the depths
are known. Depth in the input image is then estimated
by first retrieving similar images in this set, and optionally
warping their depth using SIFT flow. These (warped) depth
maps are then utilized in the objective function of a non-
linear optimization problem that encourages the resulting
depth to be smooth.

Our work is close in spirit to that of [13, 15, 16] in the
sense that we also make use of a nonparametric approach
to retrieve candidate depth maps. However, we avoid the
warping process of [13, 15], which is computationally ex-
pensive and does not necessarily improve the quality of the
candidates. More importantly, we introduce the use of dis-
crete variables that allow us to model more complex re-
lationships between neighboring superpixels, and formu-
late depth estimation as inference in a discrete-continuous
graphical model. As evidenced by our results, this formu-
lation is beneficial in terms of accuracy of the estimated
depth, and proved effective for both the indoor and outdoor
scenarios.

3. Discrete-Continuous Depth Estimation
We now describe our approach to depth estimation from

a single image. To this end, we first derive the Conditional
Random Field (CRF) that defines our problem, and discuss
the inference method that we use. We then define the differ-
ent potentials utilized in our model.

3.1. Discrete-Continuous CRF

Our goal is to estimate the depth of the pixels observed
in a single image depicting a general scene. We formulate
this problem in terms of superpixels, making the common
assumption that each superpixel is planar. The pose of a
superpixel is then expressed in terms of the depth of its cen-
troid and its plane normal. Furthermore, we make use of
additional discrete variables that encode the relationship of
two neighboring superpixels. In particular, here, we con-



sider 4 types of relationships encoding the fact that the two
superpixels (i) belong to the same object; (ii) belong to two
different but connected objects; (iii) belong to two objects
that form a left occlusion; and (iv) belong to two objects that
form a right occlusion. Here, the notion of left and right oc-
clusions follows the formalism of [11] based on edge direc-
tions. Given these variables, we express depth estimation as
an inference problem in a discrete-continuous CRF.

More specifically, let Y = {y1, . . . ,yS} be the set of
continuous variables, where each yi ∈ R4 concatenates the
centroid depth and plane normal of superpixel i, and where
S is the total number of superpixels in the input image. Fur-
thermore, let E = {ep}p∈E be the set of discrete variables,
where each ep ∈ {so, co, lo, ro}, which indicates same ob-
ject (so), connected but different objects (co), left occlusion
(lo) and right occlusion (ro), respectively. E is the set of
pairs of superpixels that share a common boundary.

Given these variables, we then form a CRF, where the
joint distribution over the random variables factorizes into
a product of non-negative potentials. This joint distribution
can be written as

p(Y,E) =
1

Z

∏
i

Ψi(yi)
∏
α

Ψα(yα, eα)
∏
β

Ψβ(eβ) ,

where Z is a normalization constant, i.e., the partition func-
tion, Ψi is a unary potential function over the continuous
variables that defines the data term for depth, and Ψα and
Ψβ are potentials over mixed variables and discrete vari-
ables, respectively, which encode the smoothness and con-
sistency between depth and edge types.

Inference in the graphical model is then performed by
computing a MAP estimate. By working with negative log
potential functions, e.g., φi(yi) = − ln (Ψi(yi)), this can
be expressed as the optimization problem

(Y∗,E∗) (1)

= argmin
Y,E

∑
i

φi(yi) +
∑
α

φα(yα, eα) +
∑
β

φβ(eβ) .

The potentials that we use here are discussed in Section 3.2.
To handle mixed discrete and continuous variables,

we make use of particle (convex) belief propagation
(PCBP) [20], which lets us obtain an approximate solution
to the optimization problem (1). More specifically, PCBP
proceeds by iteratively solving the following steps:

1. Draw Ns random samples yji , 1 ≤ j ≤ Ns around
the previous MAP solution for each variable yi.

2. Compute the (approximate) MAP solution of the dis-
crete CRF formed by the discrete variables {ep} and
by utilizing the random samples {yji } as discrete states
for the variables {yi}.

In practice, we draw samples for the plane normal of
the superpixels according to a Fisher-Bingham distribution,
which forces them to have unit norm. Samples for the depth
of the centroid of each superpixel are drawn according to
a Gaussian distribution. At each iteration, we tighten the
sampling around the previous MAP solution. The approx-
imate MAP of the discrete CRF is obtained by distributed
convex belief propagation [26].

In this work, we make use of a nonparametric approach
to obtain a reasonable initialization for the algorithm. In
particular, we retrieve the K images most similar to the
input image from a set of images for which the depth is
known. To this end, we perform a nearest-neighbor search
based on concatenated GIST, PHOG and Object Bank fea-
tures and directly make use the depth of the retrieved im-
ages, i.e., in contrast to [13, 15], we do not warp the depth
of the retrieved images. The retrieved K depth maps then
directly act as states in the first round of PCBP, i.e., no ran-
dom samples are used in this round.

In the next section, we describe the specific potentials
used in the optimization problem (1).

3.2. Depth and Occlusion Potentials

The objective function in (1) contains three different
types of potentials involving, respectively, continuous vari-
ables only, discrete and continuous variables, and discrete
variables only. Below, we discuss the functions used in
these three different types of potentials.

Potentials for continuous variables:
The potentials involving purely continuous variables are
unary potentials, and are of two different kinds. For the first
one, we exploit the K candidates retrieved by the image-
based nearest-neighbor strategy mentioned in the previous
section. The first potential encodes the fact that the final
depth should remain close to at least one candidate. To this
end, we make use of the squared depth difference. More
specifically, assuming a calibrated camera, the depth duj

i of
pixel uj = (uj , vj) in superpixel i can be obtained by in-
tersecting the visual ray passing through uj with the plane
defined by yi. This lets us write the potential

φci (yi) =
K

min
k=1

1

Np
i

Np
i∑

j=1

(d
uj

i (yi)− d
uj

k,i)
2 , (2)

where Np
i is the number of pixels in superpixel i, and duj

k,i

denotes the depth of the kth candidate for superpixel i at
pixel uj . In practice, instead of directly using the candidate
depth, we fit a plane to the candidate superpixels and use the
intersection of this plane with the visual rays. This provides
some robustness to noise in the candidates.

As a second unary potential for the continuous variables,
we also make use of the candidate depths, but in a less di-



rect manner. More specifically, we train 4 different Gaus-
sian Process (GP) regressors, each corresponding to one di-
mension of the variable yi. The input to each regressor is
composed of the corresponding measurement of the candi-
dates for superpixel i. We found these inputs to be more
reliable than image features. For each GP, we used an RBF
kernel with width set to the median squared distance com-
puted over all the training samples. For more details on GP
regression, we refer the reader to [21]. Given the regressed
value yri for superpixel i, we compute the depth duj

r,i at each
pixel uj in the same manner as before, and write the poten-
tial

φri (yi) =
wr
Np
i

Np
i∑

j=1

(d
uj

i (yi)− d
uj

r,i)
2 , (3)

where wr is the weight of this potential relative to φci (yi).
In practice, we also use the regressed value yri as a state for
superpixel i in the first round of PCBP where no sampling
is performed.

Potential for mixed variables:
Our model also exploits a potential that involves both con-
tinuous and discrete variables. In particular, we define a
potential that encodes the compatibility of two superpixels
that share a common boundary and the corresponding dis-
crete variable. This potential can be expressed as

φmi,j(yi,yj , ei,j) = wm×

gi,j‖ni − nj‖2

+ 1
Nb

i,j

Nb
i,j∑

m=1
(dum
i (yi)− dum

j (yj))
2 if ei,j = so

1
Nb

i,j

∑Nb
i,j

m=1(dum
i (yi)− dum

j (yj))
2 if ei,j = co

φoi,j(yi,yj , ei,j) otherwise,

where wm is the weight of this potential, ni is the plane
normal of superpixel i, i.e., 3 components of yi, N b

i,j is the
number of pixels shared along the boundary between super-
pixel i and superpixel j, and gi,j is a weight based on the
image gradient at the boundary between superpixel i and
j, i.e., gi,j = exp(−µi,j/σ), with µi,j the mean gradient
along the boundary between the two superpixels. To handle
the occlusion cases, the function φoi,j(yi,yj , ei,j) assigns
a cost 0 if the two superpixels are in a configuration that
agrees with the state of ei,j , i.e., left occlusion or right oc-
clusion, and a cost θmax otherwise. While this potential de-
pends on three variables, it remains fast to compute, since
ei,j can only take four states.

Potentials for discrete variables:
Finally, we use two different potentials that only involve
discrete variables. The first one is a unary potential that
makes use of a classifier trained to discriminate between
occlusion (i.e., lo ∪ ro) and non-occlusion (i.e., so ∪ co)

cases. To this end, we utilize the image-based occlusion
cues introduced in [11] and employ a binary boosted deci-
sion tree classifier. Given the prediction of the classifier êp,
our potential function takes the form

φtp(ep) =

{
−θt if ep agrees with êp
θt otherwise ,

(4)

where θt is a parameter of our model. Note that distinguish-
ing between all four types of edge variables proved too un-
reliable, which motivated our decision to only consider oc-
clusion vs. non-occlusion.

The second purely discrete potential is similar to the
junction feasibility potential used in [31] for stereo. More
specifically, it encodes information about whether the junc-
tion between three edge variables is physically possible, or
not. Therefore, this potential takes the form

φtp,q,r(ep, eq, er) =

{
θmax if impossible case
0 otherwise .

(5)

Here, we employed the same impossible cases as in [31] for
our 4 states, assuming that co typically form a hinge, while
so are mostly coplanar. Note that, here, we only consid-
ered junctions of three superpixels, since junctions of four
occur very rarely. However, 4-junctions could easily be in-
troduced in our framework.

4. Experimental Evaluation
We now present our experimental results on depth esti-

mation in outdoor and indoor scenes. In particular, we eval-
uated our method on two publicly available datasets: the
Make3D range image dataset [25] and the NYU v2 Kinect
dataset [28]. For both datasets, we compare our results with
those of the depth transfer method of [13], which represents
the current state-of-the-art for depth estimation from a sin-
gle image. In addition to the baseline [13], we also evaluate
the results of our unary terms only and of our GP depth re-
gressors on their own, as well as the results of our model
without discrete variables and with the same pairwise term
as the ei,j = so case and of the first approximate MAP in
our model obtained before sampling particles in PCBP.

For our quantitative evaluation, we report errors obtained
with the three following commonly-used metrics:

• average relative error (rel): 1
N

∑
u
|gu−du|
gu

,

• average log10 error: 1
N

∑
u |log10gu − log10du|,

• root mean squared error (rms):
√

1
N

∑
u(gu − du)2,

where gu is the ground-truth depth at pixel u, du is the cor-
responding estimated depth, and N denotes the total num-
ber of pixels in all the images.
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Figure 2. Qualitative comparison of the depths estimated with depth transfer [13] and with our method on the Make3D dataset. Color
indicates depth (red is far, blue is close).

Method rel log10 rms

Depth transfer [13] C1 0.355 0.127 9.2
C2 0.361 0.148 15.1

Our method C1 0.335 0.137 9.49
C2 0.338 0.134 12.6

Table 1. Depth reconstruction errors on the Make3D dataset for
depth transfer [13] and for our method evaluated on two criteria
(C1 and C2, see text for details.)

In both experiments, we used SLIC [1] to compute the
superpixels. For each test image, we retrieved K = 7 can-
didates from the training images. The parameters of our
model were selected using a small validation set of 10 im-
ages from the NYU v2 dataset and kept the same in both
experiments. The specific values were wr = 1, wm = 10,

Method rel log10 rms
Unary 0.352 0.142 9.61

GP regression 0.547 0.175 10.5
No discrete variables 0.326 0.147 9.932

No sampling 0.337 0.139 9.54
Full model 0.335 0.137 9.49

Table 2. Make3D: Comparison of our final results with those ob-
tained with unary terms only, with our GP depth regressors only,
using a model without discrete edge type variables, and after the
first round of PCBP where no sampling is involved.

θt = 10, and θmax = 20. Note that these parameters could,
in principle be learned. However, our approach proved ro-
bust enough for this to be unnecessary. We performed two
iterations of PCBP with Ns = 20 particles at each iteration.
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Figure 3. Make3D: Depth maps at different stages of our approach.

Method rel log10 rms
Depth transfer [13] 0.374 0.134 1.12

Our method 0.335 0.127 1.06
Table 3. Depth reconstruction errors on the NYU v2 dataset for
depth transfer [13] and for our method using the training/test par-
tition provided with the dataset.

Method rel log10 rms
Depth fusion (no warp) [16] 0.371 0.137 1.3

Depth fusion [15] 0.368 0.135 1.3
Depth transfer 0.350 0.131 1.2
Our method 0.327 0.126 1.08

Table 4. Comparison of the depth estimation errors on the NYU
v2 dataset using a leave-one-out strategy.

4.1. Outdoor Scene Reconstruction: Make3D

The Make3D dataset contains 534 images with corre-
sponding depth maps, partitioned into 400 training im-
ages and 134 test images. All the images were resized to
460×345 pixels in order to preserve the aspect ratio of the
original images. Since the true focal length of the camera
is unknown, we assume a reasonable value of 500 for the
resized images. Due to the limited range and resolution of
the sensor used to collect the ground-truth, far away pixels,
were arbitrarily set to depth 80 in the original dataset. To
take this, as well as the effect of interpolation when resiz-
ing the images, into account in our evaluation, we report
errors based on two different criteria: (C1) Errors are com-
puted in the regions with ground-truth depth less than 70;
(C2) Errors are computed in the entire image. In this sec-
ond scenario, to reduce the effect of meaningless candidates
in sky regions, we used a classifier to label sky pixels and
for the depth of the corresponding superpixels to take the
value (0, 0, 1, 80). Note that the same two criteria (C1 and
C2) were used to evaluate the baseline.

In Table 1, we compare the results of our approach with
those obtained by depth transfer [13]. Note that, using cri-
teria C1, we outperform the baseline in terms of relative
error and perform slightly worse for the other metrics. Us-
ing criteria C2, we outperform the baseline for all metrics.

Method rel log10 rms
Unary 0.350 0.132 1.11

GP regression 0.431 0.151 1.21
No discrete variables 0.354 0.141 1.20

No sampling 0.339 0.129 1.08
Full model 0.335 0.127 1.06

Table 5. NYU v2: Comparison of our final results with those ob-
tained with unary terms only, with our GP depth regressors only,
using a model without discrete edge type variables, and after the
first round of PCBP where no sampling is involved.

Fig. 2 provides a qualitative comparison of our depth maps
with those estimated by depth transfer [13] for some im-
ages of the dataset. Note that depth transfer tends to over-
smooth the depth maps and, e.g., merge foreground objects
with the background. Thanks to our discrete variables, our
approach better respects the discontinuities in the scene. In
Table 2, we show the results obtained with some of the parts
of our model. Note that, even though the sampling in PCBP
does not seem to have a great impact on the errors, it helps
smoothing the depth maps and thus makes them look more
realistic. This is evidenced by Fig. 3, where we show the
depth maps at different stages of our approach. Note that
the influence of each stage is more easily seen with NYU
v2 (see Fig. 5) for which the overall depth range is smaller.

4.2. Indoor Scene Reconstruction: NYU v2

The NYU v2 dataset contains 1449 images, partitioned
into 795 training images and 654 test images. All the im-
ages were resized to 427×561 pixels, while simultaneously
respecting the masks provided with the dataset. In this case,
the intrinsic camera parameters are given with the dataset.
We evaluated the depth transfer code provided by [13] to
obtain baseline results on the training/test provided with the
dataset and compare these results with those obtained with
our approach in Table 3. To be able to compare our results
with those reported in [14], we also applied our method in
a leave-one-out manner on the full dataset. The results are
reported in Table 4. Note that, in both cases, we outperform
the baselines for all metrics. These error metrics were com-
puted over the valid pixels (non-zero depth) in the ground-
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Figure 4. Qualitative comparison of the depths estimated with depth transfer [13] and with our method on the NYU v2 dataset.

Ground-truth Regression No sampling Sampling round 1 Final depth

Figure 5. NYU v2: Depth maps at different stages of our approach.

truth depth maps.

In Fig. 4, we provide a qualitative comparison of our re-
sults with those of [13] for some images. Note that the over-
smoothing of the depth maps generated by depth transfer is
even more obvious in the short depth range scenario. In
contrast, our approach still yields a realistic representation
of the scene. In Table 5, we show the influence of the dif-
ferent parts of our model. Note that all the components con-
tribute to our final results. Fig. 5 depicts the depth maps at
different stages of our approach. While sampling smoothes
the depth map, it still respects the image discontinuities.

In addition to the estimated depth, our model can also
predict the boundary type of the superpixel edges. In par-
ticular, the occlusion boundaries are useful cues for spatial

reasoning. We qualitatively evaluate the occlusion bound-
ary prediction by showing typical results in Fig. 6 for both
indoor and outdoor scenarios. Note that our model captures
most of the occlusion edges.

5. Conclusion
In this paper, we have presented an approach to estimat-

ing the depth of a scene from a single image. To this end, we
have employed continuous variables to represent the depth
of image superpixels, and discrete ones to encode relation-
ships between neighboring superpixels. As a result, we have
formulated depth estimation as inference in a higher-order,
discrete-continuous graphical model, which we have per-
formed using particle belief propagation. Our experiments



Figure 6. Estimated boundary occlusion map. The top row shows
the input image and the bottom row shows the estimated bound-
ary occlusion map. The superpixel boundaries are drawn in blue.
Pixels in magenta denote the estimated occlusion boundaries.

have shown that this model let us effectively reconstruct
general scenes from still images in both the indoor and out-
door scenarios. In the future, we intend to study how this
model can be exploited in 3D scene understanding by, e.g.,
jointly performing semantic labeling and depth estimation.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Suesstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. PAMI, 2012. 5

[2] O. M. Aodha, N. D. Campbell, A. Nair, and G. Bros-
tow. Patch based synthesis for single depth image super-
resolution. In ECCV, 2012. 2

[3] N. Brikbeck, D. Cobzas, and M. Jaegersand. Depth and
scene flow from a single moving camera. In 3DPVT, 2010.
2

[4] N. Brikbeck, D. Cobzas, and M. Jaegersand. Basis con-
strained 3d scene flow on a dynamic proxy. In ICCV, 2011.
2

[5] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher.
Discrete-continuous optimization for large-scale structure
from motion. In CVPR, 2011. 2

[6] A. Geiger, C. Wojek, and R. Urtasun. Joint 3d estimation of
objects and scene layout. In NIPS, 2011. 2

[7] A. Gupta, A. Efros, and M. Hebert. Blocks world revis-
ited: Image understanding using qualitative geometry and
mechanics. In ECCV, 2010. 1, 2

[8] C. Haene, C. Zach, A. Cohen, R. Angst, and M. Pollefeys.
Joint 3d scene reconstruction and class segmentation. In
CVPR, 2013. 2

[9] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the
box: Using appearance models and context based on room
geometry. In ECCV, 2010. 1, 2

[10] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image. ICCV, 2005. 2

[11] D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recovering
occlusion boundaries from a single image. In ICCV, 2007.
3, 4

[12] A. Ihler and D. McAllester. Particle belief propagation. In
AISTATS, 2009. 2

[13] K. Karsch, C. Liu, and S. B. Kang. Depth extraction from
video using non-parametric sampling. In ECCV, 2012. 1, 2,
3, 4, 5, 6, 7

[14] K. Karsch, C. Liu, and S. B. Kang. Depthtransfer: Depth
extraction from video using non-parametric sampling. PAMI,
2014. 6

[15] J. Konrad, G.Brown, M. Wang, P. Ishwar, C. Wu, and
D. Mukherjee. Automatic 2d-to-3d image conversion using
3d examples from the internet. In SPIE Stereoscopic Dis-
plays and Applications, 2012. 1, 2, 3, 6

[16] J. Konrad, M. Wang, and P. Ishwar. 2d-to-3d image conver-
sion by learning depth from examples. In 3DCINE, 2012. 1,
2, 6

[17] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimat-
ing spatial layout of rooms using volumetric reasoning about
object and surfaces. In NIPS, 2010. 1, 2

[18] B. Liu, S. Gould, and D. Koller. Single image septh esti-
mation from predicted semantic labels. In CVPR, 2010. 1,
2

[19] R. A. Newcombe, S. Lovegrove, and A. J. Davison. Dtam:
Dense tracking and mapping in real-time. In ICCV, 2011. 2

[20] J. Peng, T. Hazan, D. McAllester, and R. Urtasun. Convex
max-product algorithms for continuous mrfs with applica-
tions to protein folding. In ICML, 2011. 2, 3

[21] C. E. Rasmussen and C. K. Williams. Gaussian Process for
Machine Learning. MIT Press, 2006. 4

[22] B. Russell and A. Torralba. Building a database of 3d scenes
from user annotations. In CVPR, 2009. 1, 2

[23] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J.
Kelly, and A. J. Davison. Slam++: Simultaneous localisation
and mapping at the level of objects. In CVPR, 2013. 2

[24] A. Saxena, S. H. Chung, and A. Y. Ng. 3-d depth reconstruc-
tion from a single still image. IJCV, 2007. 1, 2

[25] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. PAMI, 2009. 1, 2,
4

[26] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Dis-
tributed message passing for large scale graphical models. In
CVPR, 2011. 3

[27] A. G. Schwing and R. Urtasun. Efficient exact inference for
3d indoor scene understanding. In ECCV, 2012. 1, 2

[28] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 2, 4

[29] C. Vogel, K. Schindler, and S. Roth. 3d scene flow estimation
with a rigid motion prior. In ICCV, 2011. 2

[30] C. Wu, J. M. Frahm, and M. Pollefeys. Repetition-based
dense single-view reconstruction. In CVPR, 2011. 1, 2

[31] K. Yamaguchi, T. Hazan, D. McAllester, and R. Urtasun.
Continuous markov random fields for robust stereo estima-
tion. In ECCV, 2012. 1, 4


