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Abstract— Extending traditional models for discriminative la- as a log-linear combination of features, simple functiofs o
beling of structured data to include higher-order structure in the  the observations and labels [2], [3]. The most common CRF
labels re_sults in an undesirable exponential increase in model architecture, the linear chain, uses features that dependeo
complexity. In this paper, we present a model that is capable of . . . -
learning such structures using a random field of parameterized observations and on pairs of adjacent labels. The protpblll
features. These features can be functions of arbitrary combina Of @ set of labelsy” for a sequenceX under a linear chain

tions of observations, labels and auxiliary hidden variables. We CRF withn featuresfi,..., f, is

also present a simple induction scheme to learn these features,

which can automatically determine the complexity needed for a 1 T

given data set. We apply the model to two real-world tasks, PY|X)= —— HGXP Z/\nfn(yt—layt|x) (1)
information extraction and image labeling, and compare our 2(X) t=1 n

results to several other methods for discriminative labeling. . o
where Z(X) is the normalization constant.

In a standard linear chain CRF with discrete observations
and labels, the features are defined so that there is a single
binary feature function corresponding to each combination

|. INTRODUCTION of observation and label components. For example, a model

ANY domains, such as computational biology anépplied to identifying addresses in a document may include a

natural language processing, contain data that cteature that is one if and only ij,_; is a city, y; is a state,
naturally be grouped into sequences. For many tasks, itagd z;, the ¢ word in the document, begins with a capital
essential that these sequences be treated as a whole, raéftar.
than as a collection of independent observations, in omler t Extending CRFs to incorporate higher order features has
exploit inherent structures. Sequence labeling, in whiabhe proven to be quite difficult as they tend to use a large number
observationz of a sequenceX is associated with a label of features; the complexity of the model is exponential in
from some finite set of label§’, is a common operation. the order of the features. To avoid overfitting, ever indreas
For example, a computational biologist may be interested &mounts of training data are needed. Most of the methods
predicting protein secondary structures given a sequehcetltat have been proposed for extending CRFs to handle larger
amino acids, or a speech recognition system may need to irdeale structure have done so in ways that either are ad hoc or
phonemes given a recording of a human speaking. constrain the type of problems that can be modeled.

It is widely recognized that generative models are not In this paper, we propose a method of incorporating larger
appropriate for labeling sequences for two reasons. Firstale structures in sequence labeling without unduly asirg
conditional independence assumptions must be made atoutrttodel complexity. Our method involves adding latent vddab
observations to maintain tractability, and second, theniag to a CRF. This development is analogous to that provided by
criteria is generally quite different from how the model Iwil Boltzmann machines, which extended Markov random fields
be used in practice [1]. In contrast to generative model@VRFs) to include latent variables. Here the latent vagabl
discriminative models directly model the conditional peeb essentially allow the model to maintain internal state:\the
bility of the labels given the observations. There exist ynarues of the latent variables, based on the observationtlglire
methods to perform classification when the dimensionality influence the choice of labels. The model, which we call
the data is fixed and when the number of labels is finitthe conditional field of experts (CFOE), uses parameterized
Most, however, assume that data items are independent &atures and is capable of learning larger scale structures
identically distributed (IID), and while they can be appli® conditioned on observations.
data where the 1ID assumption no longer holds, the resultsThe outline of the paper is as follows. In Section I, we
may be poor because the components of the data are tredtethally present the CFOE model and discuss inference and
separately. parameter learning. We also present a feature inducticenseh

The current state-of-the-art model for sequence labelitigat is capable of learning not only the feature paramebers,
is the conditional random field (CRF) which constructs also the structure of the model; that is, what features atiedn
distribution over the labels, conditioned on the obseovetj model. As our model is fairly general, we discuss a number

_ of issues that must be addressed when the model is applied
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IV, we examine the performance of CFOEs and compare themA CFOE model consists oV parameterized feature func-
to chain-structured latent state models on two tasks: dsetint tions f1, ..., fv. Associated with each feature are a particular
problem that contains large scale structure, and an infioma number of labels, which, for simplicity, we assume are con-
extraction task. We then explore how CFOEs may be extendgglious: featuref,, encodes a pattern ofi,, labels starting at
beyond one-dimensional sequences to learn structure frehiglocationt,, using a parameter matriX,, = [u, 1, ..., Up x, |-
dimensional data, and present results for a two-dimenbioffde feature can also encode a pattern Ion observations
image labeling task. (which are also assumed to be contiguous) starting at totati
sy using a parameter matrikX/,, = [wy1,...,Wnr,]. fn
Il. THE CFOE MODEL also has a bias parametkr. Associated with each feature

The features used in CRF models are typically construct?d? Idatetr: r?ntdo:n va_nEIblbn_. I'f[r:s not stncttly. netc_:es-sary to
by hand, and since it is not always known what kinds gpciude the fatent variables in the parameterization; hewe

features will be needed, models can end up with thousands?gf V€ will see below, including them generalizes the form

features to cover the many different kinds of structurescivhi © tfeaturelz gurlu:tlons and allows for non-linear interaction
may (or may not) be present in the data. If we know what kin(?f vr\]/een a ,]? S]; fthe f ¢ .
of structures are present we could pre-specify the apm@tpri The specific form of the feature function is

features. In some cases, direct searches may be feasible, bu Ky,
this is inefficient for anything but low-order models. Idgal fo(Y, hp|X) = hy, b + Zu”’k Yt ph—1
we would like to learn what structures are present in data and k=1 @)
discover robust and efficient feature functions. Ln
Disregarding observations, we can consider standard CRF + an,z “Xsp -1
feature functions as providing a particular basis set f@r re =1

resenting label patterns. A CRF feature function on a groupfFor convenience, we will let
of M labels can be represented as a matrixteonplate with

K’!L L’!L
one element for every possible label (row) of each of iie
_ . Y|IX)=b . _ . 1. (3
components (columns). The templates are binary, with on%"( %) "Jr;un-,k Ytn+k 1+;Wn,l Xs,+1-1- (3)

and only one non-zero element per column corresponding to _ . -

the label to match in that component. Evaluating the feature® CFOE defines the joint probability of label and latent
function can be thought of as matching its template againériables of a structure using a Boltzmann distribution in
the M labels. which the energy functiol(Y, H|X) is given by an additive

Motivated by our desire to have robust features that c&pdel:

learn structure, we propose using a collection of pararnzettr B 1 -

features, each based on a matrix with non-binary elemehts. T P, H|X) = Z(X) exp (—E(Y, H|X))

matrices are soft versions of CRF templates which essbntial 1

incorporate multiple templates at varying strengths. fiiraj = g P (Z fulY, hn|X)> . (4

a model using such features involves learning appropriate (X) n

parameters in the matrices of the feature functions. The probability of a structure is obtained by integrating ou

If the columns of a feature are softmaxed (exponentiatggk |atent variables:
and normalized), such a feature can be thought of as inducing
a distribution over each label variable. A high entropy rifist PY|X) = ZP(Y,HIX)
bution indicates that the feature does not care what thd labe
is since the probabilities for each value are roughly equal.
As the entropy decreases, the feature becomes more specific

Ifga\:::zt C';nprbeg'gféncggigfvr;gg gumf alarzelizntc;gettggr's tgi Thf energy function is now comprised of a collection of non-
configurations that it matcheS'ga coIIectic?n of such fezsture"r? arterms, the e?<act form of which will depend on the value
performs dimensionality reduétion with respect to a fully- at the latent varlables_ can take on. . .
enumeratedi/ " -order CRE A .CFOE model can include a baseline Ioc_al classifier that
' provides local predictions about the labels given the ofaser
tions. If one is included, the CFOE features will typicallg b
A. Basic Formulation defined only on the labels and will account for correlations
Let X = {xi,...,xr} be the observations for a particulain the labels that are not captured by the baseline classifier
structure. We assume that all observatigpsre vectors iiR?.  The resulting model can be expressed as a product model.
Categorical observations can be represented using aratodic Assuming that one local classifier is used to label each eleme
vector where th@'th element ofx; is one if and only ifx; and writingPl(y|x) for the distribution produced by the local
is the jth possible value. Le¥’ = {yi,...,yr} be a set of classifier, the model is
label variables associated witki. The y; are assumed to be T
disgret_e withy; € Y, |Y| = R; we also represent these using P(Y|X) x Hzexp (fu(Y, hn| X)) HPl(yt|Xt)- (6)
an indicator vector. n hn —1

I

H
1D e (fuY 2l X)) . (5)
n  hy



Logistic regression (LR) and multi-layed perceptrons (NILPABACDA. The subsequence of interest starts at an offset of
are the two baseline classifiers that we explore in the expeshe.
ments (see Section V). To give a concrete illustration of a CFOE for the example

Example: To illustrate the idea of parameterized featurezequence, we might use three features which encode patterns
and to contrast them with CRF features, consider a seqlientia four observations as well as four labels. Therefdfe =
structure consisting of six elements where the labels obthe L; = 4,1 < i < 3 andt; = 81 = 1,t2 = s9 = 2, and
ements are taken from the set, B, C, D}. We will consider t¢3 = s3 = 3. The graphical model corresponding to this CFOE
only features on the labels for simplicity, although it ispitble is shown in Figure 2.
to have features on both the labels and the observations.

Suppose that one commonly occurring pattern can be rep-
resented by the pattern of lab€I8| D) Ax D, where| means
'or' and * represents any label. That is, the pattern consists
of a B or a D, followed by an A, then any label, and finally
aD.

A standard CRF requires eight features of order four to
model this structure: one to mat&AAD, another forBABD,
and so on. If the pattern was not known ahead of time, the
model would need to include all 256 possible fourth-order
features. For a particular subsequence, each feature veeuld ) ] o
matched to determine whether or not that structure occurs.g'gégﬁegc? ?;aepggctﬁlr;“fgﬁ'oﬁ(ggzz‘;%ng;%ge;°cﬁfe§gg%ﬁ;ggﬁg;gl

In contrast, we can use a parameterized feature whighich are always observed. The top row are the labels, whielohserved
effectively incorporates all eight CRF features. Intutiy this during training but latent during testing. The middle row &he variables
feature should assign high probability to label B or D iI%orrespondlng to the features; these are always latenhisrQFOE,N = 3.
position 1, high probability to label A in position 2, highgtr-
ability to any label in position 3, and high probability tdok _
D in position 4. The process of matching, which we formalizB- Inference and Learming
in Equation 2, is done by element-wise multiplication of the The goal of inference is to obtain the marginal distribution
label and matrix elements followed by the summation of alif the labelsY” and latent variabled? given an observed
intermediate values to produce a final value. A high valugequenceX. In general, it is expensive to compute the exact
indicates a good match. marginals of the latent variables and the labels because the
maximum clique size can be very large. However, it is easy
to compute the approximate marginals. In particular, we can

Sequence
A B Z C DB use Gibbs sampling, a Markov chain Monte Carlo (MCMC)
A 1[0 1 000 method which repeatedly samples all variables. Each step
a B 0|1 0OO|1 in a cycle consists of taking a sample from the posterior
C0(0 0100 distribution of a variable given the values of all others.[4]
DO|0O OO 10 The bipartite nature of the CFOE model (see Figure 2)
| | leads to an efficient implementation of Gibbs sampling. The
o110lllo100 label variables can be sampled in parallel because they are
1000111010} conditionally independent given the latent variables.iBirly,
b. 0000 0000 . L. . .
0001|/]|ooo1 the latent variables are conditionally independent givea t
BAAD: 0 BABD: 0 BACD: 1 label variables and can be sampled in parallel. The posterio

probability of a label variable given the latent variablgs, }
is

-1 1
1-11-1
-1 -1 1-1
1-1 1 1

(BID)A'D: 4

P(yj = U|H7X) X exp Z un,k,vhn

- Pi(y; = vlxe).

Fig. 1. An example contrasting the application of a collettib CRF features \where the SummatioE(n k=i is over features: that refer-

with the application of a single parameterized feature to lassequence of . e - .
length four. All features are 4 by 4 matrices. (a) The labedsfiast represented encey; at indexk. The posterior probability of a latent variable

by columns of indicator vectors. (b) Each 4x4 block represen€RF feature, given labels depends on the possible values of the laterd. nod

thljch is a templﬁte- A CRF rTatChels the C_?“ecttjlon ?f _tfemplatw‘agﬂ}e In the case of binary latent variables, we have the following
, t the t t o

subsequence, where a matcn equals one It and only | e GITW y pOSterlor dlStrlbUtlon:

matches the subsequence. (c) In contrast, a single CFOEdeapplied to
the subsequence produces a high value.
auencep ’ P(hy, = s]Y,X) ocexp (s - ea(V]X)). ®)

The process of applying a set of CRF features and a singleOther methods of inference, such as variational techniques
CFOE feature is illustrated in Figure 1 for the sequencw faster sampling techniques like Swendsen-Wang [5],ctoul



5‘gn . Zh“ eXp(fn(K hn|X))Xsn+l—1hn

also be used to compute marginals. Inference is used during

training, in which the parameters of the model are adapted ~OWn. 2on, exP(fu (Y, 1| X)) (14)
to a set of data. Standard training techniques, like maximum = ZP(hn\Y, X)X, 41—-1hn
likelihood, are not easy to use because of the presence of o

the normalization termZ(X) in Equation 4. One possible . e . .
. . (X) q : P . If a baseline classifier is included in the CFOE model, it can
approach is to approximate the expectations by Markov chain . : .

. : ] . may be trained at the same time as the CFOE features or it

Monte Carlo (MCMC) sampling, but this requires extensive . , ,

. : . may be trained first and then fixed. In the former case, the loca

computation and the estimated gradients tend to be very.noi

. . . Qlassifier integrates as another component in the CD aligorit
We apply the contrastive divergence (CD) algorithm [6], .
learning method that overcomes the difficulty of computin ee [6]). In the latter case, a discount factor may be appe

. o .. Both CFOE training time and test time in order to compensate
expectations under the model distribution. The key benéfit Rr over-confident predictions of the local classifier.

applying CD to learning parameters in a random field is that At test time, we are given just the observations. The goal is

rather than requiring convergence to equilibrium, one onl infer the values of the labels. Ideally, the labels woudd b

needs to take a few steps in the Markov chain to approXiMatfasen use maximum a posteriori estimation (Viterbi decod-

the gradients. This can result in huge computational savasg ing). However, this is difficult to perform in CFOE models due

the gradients must be updated repeatedly. Learning isefurth the loooy nature and larae size of the araph. Instead. we
simplified in a CFOE due to the efficient implementation ot’fo by . 9 > grapn. '

. : ; use the Gibbs sampling procedure described above to choose
the Gibbs sampler, as mentioned previously.

- . ) _ Ilabels based on maximum posterior marginals:
The original contrastive divergence algorithm was devel-

oped for unsupervised learning where the goal is to learpa re y = argmax P(y;|X). (15)
resentation for data. The algorithm optimizes the pararaete Yi

a model by maximizing the approximate likelihood of the data

We extend it here to apply to a supervised situation: we af® Feature Induction

given both observations and labels at training, but atrtgstie The complexity of CFOE models depends on the size of

are given Jugt the.observat!on_. Hence n this paper the togec feature patterns and the number of features in the model éWhil
of the algorlthr_’n is to maximize conditional likelihood. _the feature size can be viewed as a ‘knob’ providing flexipili
To be specific, led be the model parameters, the maximurg, qqe| designer, it is desirable to determine automdgical

conditional likelihood criterion can be written as how many features should be included during learning. In

©) general, without much domain knowledge, methods such as
(cross-)validation are used to aid this decision, but they a
computationally expensive.

whereD is the training set. We begin by expressing the prob- We perform a simple type of model selection by inducing

ability of the label in the following form, after marginaii®m the features in a forward step-wise fashion. Our approadcetsta

* = log P(Y7|X7;0).
0 argmgmxj%; og P(Y’|X7;0)

out hidden variables: advantage of the fact that the exponential part of the makgin
distribution (Equation 10) is an additive function gf:
P(Y|X) ocexp() log y " exp(fa(Y,hn|X))). (10
w F(Y|X,0) =) gn(Y]X,0,). (16)
Let "

Hence the log likelihood can be viewed as a functiodal
of the additive functionF'(Y'|X,6). We adopt a functional
gradient ascent method, adding a ngvinto F' at each step
wheref,, are the parameters in the functigy. The supervised to maximize the log likelihood:

CD algorithm uses the following gradient information to .

maximize the conditional log likelihood by iterative gradt 9= ijZ:(F +9)- a7
ascent:

gn(Y|X,0,) =log Y exp(fu(Y, ha|X))  (11)
hn

We impose two constraints on: first, ¢ has the same
N <59n> B <59n> (12) functional form as the family ofy,, which is a nonlinear
Po(Y]X) P (Y]X)

o0, 09,, function with respect to the parameters in our case; second,
. o ] the parametep in g has a bounded norm, i.ejf|| < C,
where Py(Y|X) is the data distribution defined b, and ¢ that adding eacly will change F only slightly. Under

P (Y| X) is the reconstructed data distribution aftersteps hese assumptions, the cost function in Equation 17 can be
of Gibbs sampling that starts from the ground-truth dat@ Thnroximated by its first order expansion:

partial derivatives in Equation 12 can be expanded as fatlow

OGn . Zhn exp(fn (Y, hn| X)) yt, +k—1hn .
ou, . S exp(fu (Y, hp] X)) and the optimalg at stepk can be written ag)(Y|X, 6;),
’ " (13) where

= 2 Pllal¥: X si-1hn 0y = argmax (VL(F),g(V|X,00))  (19)

L(F+g)=~L(F)+ (VL(F),g) (18)




For simplicity, if we consider a single data point, thén= opinion and lowers the energy, and a value-of raises the
log P(Y'|X). The functional gradient can be written as energy (cf. Equation 4).
In this paper we consider binary latent variables, taking

(VLIE), g(YIX, 0k)) = g(Y]X, b) (20) ©On values in{x1}. Following Equation 5, the conditional

— (9(Y1X,0)) b (v x) distribution P(Y'|X) can be written as
where Pr(Y'|X) is the model probability withF' as its ex- r
ponential part. The functional gradient is a nonlinear fiorc P(Y|X) o [Jeoshea(VIX) [[ Pilwelxe). (21)
of the parametef,. only, so that we can use a gradient-based n t=1
method to optimize),, in Equation 19. The posterior probability of a latent variable given all bét
Notice that each induction step in the standard functionglpels is
gradient method, as in [7], [8], requires first searching the P(h, = 1|Y, X) = 0 (2c(Y|X)) (22)

direction in feature space that maximizes data likelihood,

followed by a line search to determine the stepsize in thahereo(-) is the logistic function.

direction. Usually, both steps in the induction involve exp  2) Parameter Sharing in FeaturesiVe have explored two
sive Markov Chain Monte Carlo (MCMC) sampling of theforms of parameter sharing in CFOESs. In one, features with
random field [8], [9]. In [8], the first step is approximated byompatible indices (based on connectivity) share the same
the Contrastive Divergence (CD) algorithm, and a re-wéight parameters. Referring back to our example CFOE from Sec-
scheme in the second, which requires careful monitoring @6n II-A, the three features could share their parameter
the effective sample size and an approximation of the featunatrices since they all have the same connectivity. Thikes t
functions. standard parameter-sharing used in sequential modelsasuch

In our functional gradient approach, we also use the Clinear chain CRFs and time-delay neural networks in speech
algorithm to compute the new cost in Equation 19 approxiecognition, as well as object recognition networks likdNee
mately, but we use a fixed stepsize. Therefore, our approgeh]. One can think of this strategy as treating the shared
can be viewed as a simpler and faster unweighted versiparameter matrix as a sliding window that is matched and
of the induction procedure of [8], in which each induceghifted across the entire sequence. This results in a model
expert is optimized directly given a bound on the normith a degree of translation invariance.
of its weights, and always a one-unit stepsize. As no line Note that it is possible to allow partial matches to avoid
search is involved, the approximation of feature functions edge effects. If a feature refers to invalid label nodes ifegy
facilitating the MCMC sampling and the re-weighting schemare att < 1 or ¢t > T in a sequence), the links to the invalid
are avoided. The modified procedure is equivalent to bogstinodes are dropped and only those that are valid are included
with a fixed step size in functional gradient ascent. Adaptn in the final model.
fixed step size avoids the line search, but it does not allev th A second form of parameter sharing involves sharing
contribution of each feature function to be weighted. Ha¥ev columns of parameters within a parameter matrix. Columns
one would expect the fact that re-sampling after each rou@gth the same parameters capture the idea that the labéls tha
of induction and using small search steps can mitigate afey match should be the same. We can thus obtain coarse-
advantage of weighting the features. grained features that match more global characteristica of

This feature induction approach can be viewed as learningt@ucture, and by incorporating features with differentels
second form of structure in CRFs. Whereas the parametrizsicbarameter sharing, a CFOE can operate at multiple levels o
features allow the system to determine an appropriate bagianularity. For example, a CFOE could include fine features
in which to represent regularities in the label/observatido match small-scale structure as well as coarser featores t
patterns, induction allows the system to find an appropriatgpture larger-scale structures.
number of bases for the given dataset. A particularly useful form of feature is a global feature
which looks at all labels and captures global regularities.
For sequences of a fixed size, global features are easy to
implement. However, for sequences whose size can vary, they

We have presented the CFOE model in a general waye more difficult to define. We approach this by creating a
However, a variety of details need to be filled in before thieature of a fixed size, and then scaling that feature to cover
model can be applied. In this section, we discuss some of the entire item, using parameter tying as required. Thisrseh
design decisions that must be made when using CFOEs. Theskes the assumption that global structure is scale imtaria
decisions allow CFOEs to run efficiently, avoid approximawhich may not always be appropriate. The feature induction
tions that are required in their most general form, and g®vi scheme can select which features should be induced at each
some flexibility with respect to the learned features. step based on their applicability.

1) Latent Variables:We have not yet specified the values With respect to the gradients required during training, vhe
that the latent variables of the features can take on. Thera a parameters are tied, the gradient for each tied paramettrve
variety of possibilities, including,, € {0,1}, h,, € {1}, and is the sum over the individual gradients for each instance in
h, € {—1,0,1}. A value of zero turns off a feature, making itthe instantiation of the model on the data where the paramete
contribute nothing to the energy, a value of 1 specifies &"lik vector is used.

D. Instantiating the Model



Q @ @ @ difficult. The latent variables in CFOE models provide some
N flexibility. Given the values of the latent variables, thedés
E are independent. However, if the values of the latent viegab
S are not known, the labels are coupled together, albeit inya wa
@ different from a straight multiplicative combination.
Kernel-based CRFs [11]-[13] also address the same rep-
resentation issue by implicitly using linear combinatiaofs
@ @ a potentially infinite feature sets. It can be shown, by the
representation theorem, that the potential functions Haee
e form of a weighted combination of kernel functions evaldate
/ at training data points, as well as all the configurations of
e cligues in the random field. As such, they can be viewed as
CRFs with a nonparametric feature representation. Our mode
employs a parametric feature representation, of which the
_ _ _ parameters can be easily interpreted as label/input patter
Fig. 3. An example of parameter sharing and global featurege&avith S k -b d CRE in th del b d
the same line style share the same parameters. The featureigna@parse ome er_ne -base ) S tr.am the mode parametgrs ase
feature on six labels. It expresses the constraint thatabels with shared On @ maximum-margin criterion [11], [13], to maximize the
parameters should have the same value. In (b), the featureskaseipanded generalization performance. However, due to the compglexit
over a sequence of length 9. L . . ' .
of the criteria, approximations must be made. Also, typycal
greedy approach is employed by kernel-based CRFs to choose

Returning to our example CFOE from Section II-A, we subset of active features from a large feature candidate se

could imagine having a coarse feature with three columnsin i"m,d thg porrespondlng Imear parameters. Th.e sgarch can be
parameter matrix and having each column apply to two lapefdlite d'ﬁ'_C_U|t when the clique size or dataset is big. .
This is illustrated in Figure 3 (a). If we needed to observe 'T‘ addition to the aforementioned W(.)rk on CRFs and its
sequences of different lengths, we could make the feattwe pyanants, the CFOE bears a close relationship to many other
a global feature by allowing it to expand and contract (to %robablhstlc models. A primary related formulation is the

minimum sequence length of 3) as required. An expansion Q?OdUCtbOf exp_erts (POE) \C’;’hiCh fconstructs' add??sity model
a sequence of length 9 is shown in Figure 3 (b). of an observation as a product of parametrized filter oufputs

or experts [6]. The exponential-family harmonium (EFH) is
a POE with the same bipartite setup as the CFOE, using
Ill. RELATED WORK latent variables with distributions drawn from the expdian

While both CRFs and CFOEs model the conditional digamily [14]. A different variant of POEs is the field of expert
tribution P(Y'|X) directly, there are a number of difference§FOE) model which replicates the experts in an overlapping
between the two types of models. The most notable differen@shion across an entire image to generate a density of a high
is the use of parameterized features in CFOESs. It may appdanensional input from lower-dimensional features [15].
that in allowing parameterized features the increase in theThe CFOE model can be seen as a conditional version of
number of model parameters is prohibitive. However, this these POE models, and particularly FOEs. Like a FOE, a
not the case. Consider CRF and CFOE models where BEOE can use multiple features replicated across a sequence
features are defined on groups f labels, each label taking or an image and combined multiplicatively. The task, howeve
on one ofR possible values. A CRF requiréd" features, and is to model labellings rather than observations. Another im
since each feature has a single parameter, the modek#as portant difference between CFOEs and FOEs is the inclusion
parameters. In contrast, a single CFOE feature requirel/ of the latent variables associated with the features, oersp
parameters so a CFOE model with features hasVv - R- M  which links CFOEs to EFHs. These latent variables enable the
parameters, a number that is linear, rather than expohentia system to form a nonlinear basis for the label patterns, and
M. This represents a significant reduction in model compfexiprovide a rich vocabulary for weighting the feature funetio
especially sinceV will likely be much smaller thamRM in the log-linear combination.

There are also some differences between CRFs and CFOEShere have been several attempts to extend traditional CRFs
with respect to the view of features as templates. The psocés include models of larger scale structures in a tractable
of matching a template to a group of labels involves matchimganner. Skip-chain CRFs model data-dependent long-term
each label and then combining the results. That is, eachroolustructure by assuming that similar observations have aimil
of the matrix is matched, producing either zero (the lab&dbels [16]. Starting with a standard linear chain CRF, ageed
did not match the template) or a non-zero value (the labisl added between pairs of label nodes whose observations
matched the template). For CRFs, a match always resultsaire similar, where the similarity measure is defined by the
a value of one. A CRF integrates the per-label results Imyodeler. Other proposals make strong limiting assumptions
multiplying them together. Thus, features in CRFs are dkel-| For example, the semi-Markov CRF groups together adjacent
features. In contrast, a CFOE feature is or-like as thet®avk label nodes with the same value into a segment, so a semi-
added together. While multiplicative features are powethd Markov CRF of order/ is a linear chain CRF of order at most
coupling of parameters in a CFOE would make learning mord with the constraint that all/ labels must be the same [17].

\
\
\
\




Neither of these models are very general; they are only Usefuoblem that incorporates ambiguous input and long-term
when the data exhibits some fairly strong characteristics. dependencies.

TABLE |
° OBSERVATION-TO-LABEL MAPPING FOR THE SYNTHETIC PROBLEM

Observation 1 2 3 4 5

Label A B C Q DE
ho hy hy p————--- hr

There are five observation§l, 2,3,4,5} and six labels
° {A,B,C, D, E,Q}. The mapping from observations to labels,

shown in Table |, is deterministic with the exception of an

ambiguity with observation 5, which can map either to D or
Fig. 4. Graphical model for the HRF. to E. The ambiguity can be resolved by using knowledge of the

label patterns: QABCDQ and QBCEQ, which are separated by

An alternative approach to learning sequential structusections of continuous Qs. D and E only appear after a BC so

is embodied in latent state models such as the input-outpé ambiguity can be resolved when it is known whether or
hidden Markov model (IOHMM) [18] and the hidden randormnot an A precedes BC.
field (HRF) [19]. The IOHMM is a directed graphical model 1) Setup: Both the training set and the test set consisted
that posits the existence of a latent finite state machinis; itof 100 sequences of length 50. The observations used at
similar to a hidden Markov model except that the transitioime ¢ are just the raw observations (1, 2, 3, 4, or 5) in a
distributions are conditional on the observations. The H&RF one-hot encoding. Given a sufficiently large window over the
the undirected version of the IOHMM. Its graphical modebservations, any method can resolve the ambiguity present
shown in Figure 4, is very similar to that of the CFOEn the data; however, it may not be possible to allow large
(Figure 2), except that the connectivity between the labdl awindows with real, high-dimensional input data so we lirdite
the latent nodes is sparser and that there are links betwées window to be the current observation to simulate such
the hidden nodes in the intermediate level. The graphiaadnditions.
model for the HRF also has links between the labels and theWe trained a logistic regression model, a linear chain CRF
observations; adding local classifiers to a CFOE would addodel of order 2, an IOHMM, an HRF, and several CFOE
similar links in its graphical model. Both IOHMMs and HRFsmodels with varying numbers of features. Both the IOHMM
can perform well when the number of latent states is knowand the HRF had three latent states (the minimum required
However, training can take a long time and, more criticatly, to model the data). We trained several CFOE models with
can be very difficult to choose a good number of latent statdeatures that looked at groups of 6 contiguous labels, dictu
especially if the data is complex and noisy. In our expegenamodels with 1, 2, and 6 features and one that used feature
it is considerably easier to choose CFOE architectures thaduction (adding up to 25 features). All CFOE models used
it is to choose the number of latent states for IOHMM anthe pre-trained logistic regression model to get initialsgo
HRF models. It is also not clear how to generalize these tvetassifications and parameter sharing to apply features ove

models to higher-dimensional data. sequences. We also allowed partial applications of featate
the edges of sequences.
IV. EXPERIMENTS For the logistic regression, IOHMM, and HRF models,

We investigated and evaluated the CFOE on several data@ining was stopped when the relative change in the log
sets including a simple synthetic problem, an informatiolikelihood was less than x 10~%. For the IOHMM and the
extraction task, and an image labeling task. HRF at most 100 iterations of optimization were done during

In our experiments, we chose to make the latent variableshe M step, and the total number of iterations of EM was
binary, taking on values if£1}. We also chose to restrict setlimited to be at most 100. The CFOE models that did not
of feature functions to depend only on the labels and not en thse feature induction were trained for exactly 100 itersio
observations. The baseline classifiers that we use aretibgias the computation of the likelihood was expensive. Three
regression (for the synthetic problem and the informatiaconstruction steps were done in the reconstruction pbiase
extraction task) and a multi-layer perceptron (for the imagCD and 50 iterations of Gibbs sampling were done to compute
labeling task). MAP estimation is used to pick labels for athe approximate marginals at test time; none of the samples
models other than the CFOEs, for which we use MPM.  were discarded as burn-in.

All models were implemented in MATLAB. Experiments All training runs were restarted five times with different
were run on quad-CPU Intel Xeon (2.4 GHz) machines witjitial parameter settings in order to estimate traininget.

4 GB of physical memory running Red Hat Linux 7.3 angror models with latent variables, the restarts helped déhl w

MATLAB 7 (R14). the problem of local optima. For each model, the run that
_ _ had the best performance on the training data was seleated fo
A. Synthetic Problem: Ambiguous Input testing.

To investigate the type of features CFOE models can learn2) Results: All models correctly labeled the As, Bs, Cs
and to evaluate their efficacy, we designed a simple syethedind Qs. As expected, the logistic regression and CRF models



were not able to distinguish between D and E. Because obbserved that some runs were very short, only three to five
slight imbalance between the D and E labels in the trainirgrations, and other were much longer.

data (there were 128 Ds and 145 Es), both classified input 4

as an E. The IOHMM and HRF were able to model the da

g Cora: Reference Paper Citations
perfectly.

The Cora citations datasetonsists of 500 bibliography
Label Feature 1 Label Feature 2 entries from academic papers. There are 13 possible labels
for each token in each entry: author, book title, date, edito
institution, journal, location, note, pages, publishech, title,
and volume. While bibliography entries are generally shod a
follow some conventions, they are interesting becausedary
display large variations in total length and the length afrea
section within an entry. In addition, each entry does notghv
include all possible sections and there can be differentes i
the ordering of sections. Three example sequences are shown

Fig. 5. Parameter matrices learned by a CFOE with 2 featuresteVihi in Figure 6.
positive, black is negative, and blot size describes the iatm

Column Column

1) A. Cau, R. Kuiper, and W.-P. de Roever. Formalising

All CFOE variants modeled the data perfectly. To illustrate ~ Dijkstra’s development strategy within Stark's formal-
the kinds of features that a CFOE can learn, we show the ism. In C. B. Jones, R. C. Shaw, and T. Denvir, editors
parameter matrices learned by a CFOE with 2 features in , Proc. 5th. BCS-FACS Refinement Workshop, 1992.
Figure 5. These parameter matrices include some integestin2) M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Applica-
patterns: the first feature prefers the pattern Q**E andkdis| tion of hash to data base machine and its architecture.
A*D. These two patterns essentially encode the two possibl ~ New Generation Computing, 1(1), 1983.
label patterns, which can be used to disambiguate an inpuB) W. Cohen. Learning from textbook knowledge: A case
of 5. The second label feature learns the opposite patterns, study. In AAAI-90, 1990.

referring A**D over Q**E. However, it also includes pa- . _ o
rpametersgsimilar to the first feature, albeit at differerﬂselfg, Fig. 6. Three example items from the Cora citations dataset.
illustrating that a feature can match multiple configunasio

Similar effects are seen in the parameters leamed by tes OtQSO citations chosen at random and a test set containing the

CFOE mod_els. L . remainder. The observation features that we used inclu8ed 2
As mentioned earlier, it is possible for CRFs to perform : .
: : regular expression features and list-based features (asch
well on the problem. However, the features must either thelu
. person and place names) as well as 1374 vocabulary features
more observationsx to x;_3) or more labels (fourth-order).

; _ /" created by extracting whole words from the training datee Th
In both cases, the number of parameters in the models is ver | ) d list-based f h d
large compared with the number of parameters required 5 uar_exprbelssmn T}nf Ist-base b_eaturesé at we ufz: are
CFOEs with a small number of features. A second-order CF,? own in Table Ill. All features are binary, and, except fue t

with a window of 4 has 22,500 parameters. A fourth-order ndsin .features, \gnore ”a"”.‘g commas, pe_rlodg, ce_lon
) . .. —and semi-colons. The observation feature set is fairly Emp
CRF with a window of 1 has 6480, an order of magnitude
d could be developed further.

less, but still a significant number. By comparison, a CFOE.

with two features of width 6 and a logistic regression cléessi .We trained several models mclud_mg a logistic regres

ion model and an IOHMM with six latent states. The
has only 104 parameters. The IOHMM and the HRF mode : . .
observation vectors were augmented to include obsengtion
have 180 parameters.

from a window of 3 around the current observatiotf: =

1) Setup: We divided the data set into a training set of

TABLE II [x:—1;X¢;x¢4+1]. The dimensionality of the augmented obser-
TRAINING TIMES OF THE MODELS AVERAGED OVER FIVE RUNS vation vectors was 4191.

_ . We attempted to use cross-validation to choose the number
Method  Mean Time (s) Standard Deviation of latent states for the IOHMM model, but this was aborted
LR 3.0 x 10T 8.6 x 10V it id h tak th ks t let
CRF 3.9 % 102 1.6 x 102 as it would have taken over three weeks to complete, even
IOHMM 2.2 x 103 2.2 x 102 with no random restarts and with running the cross-valiati
HRF 3.2 x 10° 4.2 x 10° procedure for each state on a separate CPU. The number
CFOE 8.2 x 102 1.7 x 10!

of iterations of EM was limited to 100 and the number of
o ) ) iterations of optimization in the M step was limited to 100.
The mean training time of the models is shown in Table Il. \we also trained CEOE models that used two types of
The results for the CFOE are for the model with two featuregsatyres: local features which looked at groups of 10 con-
the time given does not include the time needed to trajyous labels and global features of size 6 that were scaled

the logistic regression classifier, which was negligibléeT it each sequence. The first model, referred to as CFOE(lr),
variance for the HRF is large because the model seems to

be very susceptible to local optima. During training, it was !Available atht t p: / / www. cs. umass. edu/ ~nccal | um




TABLE Il

F1is 1 whenB = C = 0. It essentially measures the number
OBSERVATION FEATURES USED WITH THECORA DATA

of true positives compared to the number of true positivas pl

NAME DESCRIPTION mistakes, ignoring the number of true negatives.
InitCap Starts with a capitalized letter.
AllCaps All characters are capitalized. TABLE IV
AllDigits All characters are digits. RESULTS FOR THE INFORMATION EXTRACTION TASK ALL RESULTS ARE
ContainsDigits Contains at least one digit.
ContainsDots Contains at least one period. IN PERCENT
ContainsDash Contains at least one dash.
Lonelylnitial A single letter followed by a period. Model Accuracy F1
SingleChar One character only. LR 85.1 76.9
CapLetter One capitalized character only. IOHMM 86.3 74.0
URL Regular expression for a URL CFOE(Ir) 88.9 79.9
InParen In parentheses. CFOE(ind-1) 93.1 85.2
Year Regular expression for a year. CFOE(ind-2) 93.1 85.0
Punc Only punctuation (period, comma, colon,

semi-colon). The results are shown in Table IV. The IOHMM perf d
EndsinComma Ends in a comma. : periorme
EndsInDot Ends in a period. quite poorly relative to the other methods. This is becatige i
E”gs:”go'of‘c | ';:E”C:js in a colon. | very difficult to choose how many latent states are needed and
EndsinQuote  Ends in & quotation mark. training the model takes such a long time that cross-vatidat
StartsWithQuote ~ Starts with a quotation mark. is impractical. The CFOE models were able to improve upon
Name Appears in a list of names. the results of the local classifiers upon which they were
Place Appears in a list of places. based. The capabiliti f deli | | d dlob
Acronyms Appears in a list of acronyms. : 'pa lliues Tor modeling larger scale ar? g oba
Months Appears in a list of month and day names.  Structure provided by CFOE(Ir) helped that model improve
Word Matches the word. upon the basic logistic regression model. By using improved

local features, both CFOE(ind-1) and CFOE(ind-2) were able
to improve the results even further. It is not clear that the
combined 10 features of each type with the basic logistigidition of global features in CFOE(ind-2) is useful. Hoagv
regression model. CFOE(ind-1) combined 10 local featur@ife global features that it did learn are interesting. Fégar
with a logistic regression classifier built with a simplette@ shows the parameters of one global feature from CFOE(ind-2)
induction scheme based on the method proposed by [20] A&t captures the global structure of a bibliographic efee.
CRFs that produced a set of 1605 observations featuresithoagthor names are followed by a title, which may then be
from a window of width 9 centered on each observatio%nowed by some other types of words. It strong|y prefers
CFOE(ind-2) added 10 global features to CFOE(ind-1).  |ocation, date, or page words as the last words in an entry.
2) Results:The models were compared using two metrics: The best CFOE results are shy of those reported by [21]
the average per-sequence prediction accuracy and thegave(accuracy: 95.37, F1: 91.50), who developed a CRF specially
F1 score. Per-sequence accuracy is defined to be the numbgered for the task with a large and complicated feature
of correctly labeled elements divided by the total number @ibrary that included features of varying order and a laregeo$

elements: observation features. The feature induction scheme prden
ZT Iy = ] by [20] was used to select the best features to use. It iswliffic
accuracy(Y,Y') = W (23) to speculate about why the CFOE models obtained lower F1

scores than their CRF without knowing the details of the rhode
The F1 score, or F measure, is defined to be the harmoaitd feature set, although we expect that expanding our set of
mean of the precision and the recall. With respect to a specifibservation features will help improve our results evethien
labell, let A be the number of true positiveB, be the number  We suspect that higher-order CRFs may not do much better
of false negatives’ be the number of false positives, afl than regular CRFs as the size of the sections in a citation
be the number of true negatives. Precision is the fraction gfe, in general, quite large when compared to the limited

tokens identified as that really arel. orders that are practical with higher-order CRFs. It might b
A necessary to construct a CRF with a very high order in order to
P= At C (24) capture knowledge about how several sequences are stedctur

However, the exponential increase in model complexity is
The recall of a method is the number of true positives dividgstohibitive as most of the features in such a model would

by the total number of positive examples: be unused and training would much more difficult due to the
A high number of parameters and the possibility of overfitting
R = AT B (25) The CFOE model does not have these drawbacks; we believe
that further improvements to the application of the CFOE to
The F1 score is thus this dataset would be more fruitful than exploring highedey
2PR CREFs.
Fl = P+R The time it took to train each of our models is shown in
24 Table V. The time shown for the CFOE does not include the

T 244 B+C° (26) time taken to train the logistic regression model with featu
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into our CFOE; we also split the training and testing data in
the same way.

The CFOE model applied to this dataset has two types of
features with different sizes. Small features are defineghoh
regions and overlap bg horizontally and3 vertically. The
overlap is chosen to achieve a trade-off between coverage of
the label field and the model complexity. Large features are
defined on the whole label field which is divided into non-
overlappeds x 6 patches of siz&0 x 30 pixel units. All the
connections of each large feature within each patch share th
same parameters. During training, we alternatively indube
small and large features for 16 epochs for a total of 32 featur

The effectiveness of the feature induction is shown in
Figure 8, in which we evaluated the accuracy rate of the model
with first k£ features on the test data for differehtvalues.
The performance increases as features are induced, and it
asymptotes after several iterations. The whole trainingess
required 13 hours with our system setup, which is slighthsle
than half the time required to train a full model with the same
size, in which the features are trained in parallel as oppose
to the sequential feature induction scheme employed here.

0.8

1 2 3 4 5 6

Fig. 7. Parameters for one global feature learned by CFOJE(ind 07sf

TABLE V
TRAINING TIMES OF THE MODELS

0.7r

Test Accuracy Rate

Method Time (s)
LR 8.4 x 10% 065"
IOHMM 8.1 x 10°

CFOE(ind-2) 2.4 x 10*

0.6

induction (roughly 7.5 hours). In general, all models reedi 055 ‘ ‘

considerable time to train, although the IOHMM was the mo 0 % umber of induced features *
costly to train. The longer training time of IOHMM models
(longer still when cross-validation is used) is certainigt n
justified given the disappointing results on the Cora refees
data set. We also trained two additional models with different featur
sizes. One hadi x 4 features with an overlap of 2 in
each direction; the other use@® x 12 features overlapping

by 6 in each direction. Table VI summarizes the models’

CFOEs can be extended fairly easily to apply to structurggsting accuracy averaged over 5 runs, which shows that the
data beyond simple one-dimensional sequences. In this SeOE performance is not very sensitive to different feature
tion we consider extending the CFOE to apply to a twaonfigurations.
dimensional structure learning problem, involving labgli
pixels in images.

We apply CFOEs to a database of labeled im&ges
100-image subset of the Corel image database, consisting of
African and Arctic wildlife natural scenes. Each image is x4 656 12 % 12
180 x 120 pixels, and each pixel was manually labeled as one Accuracy 78.3+0.5 79.8+£0.5 79.0+06
of 7 classes: 'rhino/hippo’, 'polar bear’, 'vegetationsky’,

'water’, ’snow’ and 'ground’. For comparison purposes, we We evaluate the performance of our model by comparing
incorporated the same MLP classifier used in this earliekivorwith a simple CRF and the MLP classifier. The simple CRF is
also built upon the MLP classifier, but includes only paimvis
2Available atht t p: / / ww. cs. t or ont 0. edu/ ~hexm interactions between each site and its 4 nearest neighbors

Fig. 8. Test performance with different number of features.

C. Image Labeling

TABLE VI
IMAGE LABELING ACCURACY RATES FOR THE MODELS WITH DIFFERENT
FEATURE SIZES
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on the lattice of pixels. We used a set of input-independeot CFOEs allows for a second form of structure learning,
and homogeneous feature functions as in [2]. The correxg feature induction determines appropriate structunethio
classification rates on the test sets are shown in Table VII.given problem.
The CFOE results are also compared to the results of theSeveral avenues based on this formulation merit further ex-
multiscale Conditional Random Field (NCRF) model proposedoration. The current implementation of the CFOE incotgsa
by [22] and the TextonBoost model in [23]. The label featuréhe input information solely through site-wise classifietsle
representation in the CFOE is based on this earlier modit$, higher order features do not depend on the observations.
but the training is quite different. The mCRF model strueturThis limits the representation power of the CFOE model.
is tuned manually, and all the features are learned simedtarAs suggested in our formulation, it is straightforward tadad
ously. In the CFOE, we only specify the maximum size dhe observations into our higher order features as biassterm
label/input pattern, leaving the incremental learningcpdure  When the input dimensionality is large, a better regulaiorat
to decide on the complexity of the feature set, based on theethod is needed for training those augmented features. In
dataset. The TextonBoost model used a different set of imettoaddition, an earlier instantiation of this method in the dam
up shape cues, and included pairwise interactions only.  of image labeling [22] employed global features of the data;
The outputs of selected models are shown in several imagdsle these learned some interesting features, more work is
in Figure 9. We can see that the induced CFOE model hageded to determine if they are useful in sequence labeling
better performance than the MLP classifier and the CRF-likend other structured output tasks.
model. Furthermore, it provides almost identical perfanoea =~ For sequential data, it may be interesting to use one or
to the mCRF model reported in [22]. Note that our inducechore latent-state temporal models, such as IOHMMs or HRFs,
model has a considerably simpler structure than the mCR&ther than a simple local classifier. These models would-com
model, with only 32 features in total. Compared to the batdfine the flexibility of state-based models for variable mgmo
training in that model, the CFOE feature induction proceduwith the power of the CFOE for recognizing larger structures
reduces the computational requirements since we only lsealtcis also possible to incorporate a CRF model, but the direct
the parameter space of a single feature function at each.stdgbel-to-label edges complicate sampling as the label sode
can no longer be considered to be conditionally independent

TABLE VI given the latent variables. However, efficient samplingeseés
IMAGE LABELING ACCURACY RATES FOR THE DIFFERENT MODELSALL based on bellef propagation can be formulated.
RESULTS ARE IN PERCENT Although we have only examined CFOEs in two domains
Model Accuracy we believe that their modeling flexibility and their abilitg
MLP 66.9 model larger scale structures can be useful in other domains
MLP+MRF  70.6 such as bioinformatics, where they may be useful for per-
CFOE 79.8+0.5 : . -
MCRE 80.0 forming protein secondary structure prediction, and laggu
TextonBoost  74.6 processing.
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