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Abstract

This paper addresses the problem of joint 3D object structure and camera pose es-
timation from a single RGB image. Existing approaches typically rely on both images
with 2D keypoint annotations and 3D synthetic data to learn a deep network model due to
difficulty in obtaining 3D annotations. However, the domain gap between the synthetic
and image data usually leads to a 3D object interpretation model sensitive to the view-
ing angle, occlusion and background clutter in real images. In this work, we propose a
semi-supervised learning strategy to build a robust 3D object interpreter, which exploits
rich object videos for better generalization under large pose variations and noisy 2D key-
point estimation. The core design of our learning algorithm is a new loss function that
enforces the temporal consistency constraint in the 3D predictions on videos. The exper-
iment evaluation on the IKEA, PASCAL3D+ and our object video dataset shows that our
approach achieves the state-of-the-art performance in structure and pose estimation.

1 Introduction

Estimating 3D object structure and/or pose from 2D images is a fundamental problem in
computer vision and of great importance in a broad range of applications, such as au-
tonomous driving [7] and object manipulation with robots [34]. Despite the success of 3D
object reconstruction through multi-view geometry [1] or jointly with pose estimation in the
SLAM pipelines [9], it remains challenging to recover object structure and/or camera pose
from a single RGB image [30, 33]. Without relying on having correspondence between
multi-view images, single-image 3D object structure recovery is usually less restrictive and
can be applied in broader scenarios than the geometry-based approaches.

Inspired by recent breakthrough in many computer vision problems (e.g., [13, 20]), deep
networks have been explored to infer 3D properties of objects from a single input image,
including dense depth map [10] or 3D mesh representation [2], 3D landmark-based struc-
ture [15] or camera pose [5], and joint estimation of structure and pose [30]. One main chal-
lenge in single-image 3D structure estimation is the lack of image data with ground-truth 3D
annotations as collecting such annotations is expensive and time-consuming.
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To address this problem, Wu et al. proposed a two-stage deep network that first estimates
2D keypoints of an object and then lift them into a 3D representation [30]. The network is
trained using real images with 2D annotations for its keypoint estimation module and 3D
synthetic data for the 3D interpretation module. To bridge the domain gap between the real
and synthetic data, the entire network is fine-tuned to minimize the re-projection errors on
the real images. Such synthetic-data augmentation approaches, however, suffer from two
limitations: First, with limited 2D annotated data, it is challenging to cover the entire pose
space of an object category, and hence the fine-tuned network has difficulty in dealing with
large pose variations. In addition, the 3D network module is sensitive to the quality of
2D keypoint estimation, and its performance deteriorates significantly with adverse viewing
condition such as occlusion.

In this paper, we tackle the problem of joint 3D object structure and camera pose esti-
mation, aiming to improve the robustness and generalization of deep network-based inter-
pretation models. To this end, we propose to utilize rich video data of objects to enhance
the learning of a 3D object interpretation network. Using video sequences provides two ad-
vantages in network learning: First, object poses and viewing angles have larger variations
in many video data, which can enrich the image-based training set. Second, we are able to
exploit 3D and temporal consistency constraint to learn from videos with minimal labeling
effort. An example of our 3D object interpretation pipeline is shown in Figure 1.

Specifically, we build a robust 3D object interpreter sharing the same overall structure
as the 3D-INN [30]. Unlike the 3D-INN, we adopt the stacked hourglass network [22] as
the 2D keypoint estimator for its better localization performance. To train the network, we
develop a semi-supervised learning strategy that utilizes both the original training data as
in [30] and a weakly labeled video dataset, in which only the object category of each video
is annotated. Our training procedure starts from a pre-trained 2D keypoint estimator and 3D
interpretation module (based on the original data) and refines the entire model on both 2D
annotated images and weakly labeled videos. To achieve this, we design a hybrid learning
loss function consisting of a re-projection loss term defined on the 2D image set and a 3D
structure loss term defined on video sequences. Our 3D structure loss encourages the smooth
transitions between neighboring frames and consistent 3D model estimation. Moreover, we
explore a simple curriculum learning method that starts from short video sequences and
gradually increases the video length, which further improves the model performance.

We evaluate our method on the challenging IKEA, PASCAL3D+ dataset and our object
video sequence dataset. Our approach achieves superior performance over the state of the
art [30] while our ablative study also demonstrates the effectiveness of each module in our
method design. The main contributions are summarized as follows:

e We propose a semi-supervised learning method that utilizes video information to boost
3D structure and camera pose estimation. We design a novel loss function on video so
that the method is more robust towards different camera poses and structures.

e We develop a new object video dataset from [8] for the semi-supervised learning set-
ting. For each sequence, we provide the object class annotation which is easy to label.

e We train a robust 3D object interpreter that achieves the state-of-the-art performance
for three object classes in IKEA dataset and on the PASCAL3D+ dataset.

Our dataset and code are available at https://github.com/hailieqh/3dobj_structure.
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2 Related Work

Monocular 3D Reconstruction Reconstructing 3D object from a single image is a long-
standing challenge in computer vision. Unlike the multi-view reconstruction using structure-
from-motion (SFM) [1] or space carving [24], single-image approaches do not rely on feature
point matching or foreground segmentation and thus can be applied to broader scenarios,
such as textureless objects and cluttered scenes. As it is an ill-defined problem, early works
extensively make use of 3D CAD models as priors, and align them with input images to
obtain 3D reconstruction [2, 3, 14, 18]. However, such methods have difficulty in handling
object variations beyond the available CAD library.

Recently, inspired by the success in semantic understanding, deep networks have been
widely used to solve the problem of single-image 3D reconstruction [4, 11, 29, 31]. The
majority of these approaches, however, focus on recovering dense 3D volumetric shapes and
do not build an abstract structure model in terms of object parts or landmarks. By contrast,
our work aims to reconstruct a skeleton model of the target object class.

There have been several attempts to recover the 3D keypoints of objects from a single
image [15, 27, 36], which usually first detect 2D landmarks and then fit a 3D parametric
skeleton model to minimize the re-projection errors. One main challenge is that, unlike the
volumetric representation, it is expensive and tedious to obtain 3D annotations of keypoints
in order to learn a skeleton object model. To address this, [30] proposed 3D Interpreter
Network(3D-INN), which uses synthetic data to learn a 2D-to-3D projection and fine-tune
the joint model of 2D keypoint estimation and 3D reconstruction in an end-to-end manner.
Our work is built upon the 3D-INN and recent 2D landmark estimator [22] but exploits
videos to reduce the domain gap due to training using synthetic data.

Camera Pose Estimation There is a large body of work on camera pose estimation from a
single image, which can be roughly categorized into two groups: one is to directly regress
camera pose via single image [6, 21], and the other is first estimate keypoints of a object then
estimate pose from 2D keypoints [30, 37]. Several researchers [30, 33] also propose deep
networks to jointly optimize 3D object structure and camera pose.

Weakly Supervised Learning with Videos In many vision tasks in which the annotations
are scarce or expensive to obtain, videos have been used to provide additional weak supervi-
sion to improve model learning, such as action recognition [17], semantic segmentation [26],
and pose estimation [35]. In this work, we exploit temporal consistency of 3D model and
camera motion in weakly labeled videos to learn a robust 3D object model. Note that videos
are widely used in multi-view 3D object reconstruction with SEM [16] while here we focus
on 3D model estimation from a single image.

3 Approach

Our goal is to jointly estimates the 3D object structure and camera pose from a single RGB
image in a robust manner. To this end, we adopt a two-module deep network as in [30],
which first predicts the 2D keypoints in image plane and then maps the keypoints into its
3D shape representation. In order to build a robust model, we develop a semi-supervised
learning strategy to exploit a rich set of video sequences. Below we first describe our model
design in Sec. 3.1, followed by the semi-supervised learning strategy in Sec. 3.2.


Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Seitz and Dyer} 1999

Citation
Citation
{Aubry, Maturana, Efros, Russell, and Sivic} 2014

Citation
Citation
{Bansal, Russell, and Gupta} 2016

Citation
Citation
{Izadinia, Shan, and Seitz} 2017

Citation
Citation
{Li, Zia, Tran, Yu, Hager, and Chandraker} 2017

Citation
Citation
{Bogo, Kanazawa, Lassner, Gehler, Romero, and Black} 2016

Citation
Citation
{Girdhar, Fouhey, Rodriguez, and Gupta} 2016

Citation
Citation
{Tulsiani, Zhou, Efros, and Malik} 2017

Citation
Citation
{Wu, Wang, Xue, Sun, Freeman, and Tenenbaum} 2017

Citation
Citation
{Kar, Tulsiani, Carreira, and Malik} 2015

Citation
Citation
{Tome, Russell, and Agapito} 2017

Citation
Citation
{Zhou, Leonardos, Hu, and Daniilidis} 2015

Citation
Citation
{Wu, Xue, Lim, Tian, Tenenbaum, Torralba, and Freeman} 2016

Citation
Citation
{Newell, Yang, and Deng} 2016

Citation
Citation
{Brachmann, Michel, Krull, Yingprotect unhbox voidb@x penalty @M  {}Yang, Gumhold, etprotect unhbox voidb@x penalty @M  {}al.} 2016

Citation
Citation
{Michel, Kirillov, Brachmann, Krull, Gumhold, Savchynskyy, and Rother} 2016

Citation
Citation
{Wu, Xue, Lim, Tian, Tenenbaum, Torralba, and Freeman} 2016

Citation
Citation
{Zia, Stark, Schiele, and Schindler} 2013

Citation
Citation
{Wu, Xue, Lim, Tian, Tenenbaum, Torralba, and Freeman} 2016

Citation
Citation
{Yan, Yang, Yumer, Guo, and Lee} 2016

Citation
Citation
{Laptev, Marszalek, Schmid, and Rozenfeld} 2008

Citation
Citation
{Tokmakov, Alahari, and Schmid} 2016

Citation
Citation
{Zhou and Deprotect unhbox voidb@x penalty @M  {}la Torre} 2016

Citation
Citation
{Kirk, O'Brien, and Forsyth} 2005

Citation
Citation
{Wu, Xue, Lim, Tian, Tenenbaum, Torralba, and Freeman} 2016


4 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Video Heatmaps 3D Skeletons
o

5 “ Eﬁ {fen o) Ry Tead
ﬁ j CIERT

ffood R T 77
Pty L

(o1 Oed Reat, Ty}
P Ykt

| P B g i
[ o IN) -~ L
Na = Na o
/" 7
/7
T

(a) (b)

P v} ?

Figure 1: (a) An overview of our approach to 3D object structure recovery. After train-
ing with weakly annotated video data, our method generates better 3D interpretation. (b)
Overview of our semi-supervised learning for the 3D object interpreter network. We
combine Keypoint-5 data and video data within a batch to be the input of our network. The
figure shows how we calculate the loss.

3.1 Model Architecture

Given an input image I of an object category, we aim to predict its 3D skeleton defined by
a set of keypoints and the relative camera pose w.r.t. a canonical coordinate system of the
3D object. Formally, we denote the keypoints as ¥ = {yy,---,yy} € R¥**¥, and parameterize
the camera pose by its rotation R € R*>*3, translation t € R?, and focal length f. In order to
encode shape prior, we adopt the skeleton representation using a linear combination of pre-
defined base shapes Sy, € R3*V so that Y = Zszl 04k, where {0y} are the weight parameters
and K is the number of base shapes. Let o = {(xk}szl, the 3D object interpretation problem
can then be formulated as estimating S = { &, R, t, f} from the image I.

We employ a similar model design as the 3D-INN [30], and build a deep neural network
with two modules. The first module predicts 2D keypoint heatmaps from the image and
then the second lifts the 2D prediction to 3D by estimating the parametric representation of
the 3D object shape and camera pose. For 2D keypoint estimation, we adopt an one-stack
hourglass network [22] because of its compact structure and high-quality heatmaps. The
hourglass module takes as the input an image of size 256 x 256, and uses a set of residual
modules with pooling that first gradually downsample the convolution feature maps and then
upsample the feature maps to a size of 64 x 64, on which it predicts a set of 2D keypoint
heatmaps. We refer the reader to [22] for a detailed description. The second module of
our network consists of four fully connected layers with widths of 2048, 512, 128, and |S|,
respectively, where the output is a concatenation of all parameters in S. Here we represent
the rotation matrix R by the sin and cos values of three Euler angles, and the network predicts
those 6 values in its output, denoted by r € RS.

During training stage, we also add a deterministic projection layer as in [30], which
allows us to finetune our network using input images with only 2D keypoint ground truth.
Under center projection assumption, the 2D coordinates of the keypoints X can be written as

K
X=PRY+T)=PRY o4Sc+T) (D
k=1
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where T =t-17 (1 € RY), and P is the projection matrix which only depends on f.

Network Pre-training We pre-train the two modules of our network separately as in [30].
For the 2D hourglass network, we train it on a dataset of real images with 2D keypoint an-
notations. The 2D-to-3D module is trained on keypoint maps generated by 40,000 synthetic
objects with 3D ground-truth shapes (including both structure and view). The synthetic
objects are generated by randomly sampling the structural parameters ¢ and viewpoint pa-
rameters P, R and 7. To obtain a baseline network, we finetune the entire network on the
real image dataset to minimize the reprojected 2D keypoint errors. Empirically, we found
the baseline network has already achieved better performance than the original 3D-INN (See
Sec. 4.3).

3.2 Semi-supervised Learning of 3D Interpretation

While the synthetic data augmentation enables model training without 3D ground truth, the
performance of the 3D object recovery is limited by the domain gap between real and syn-
thetic data as well as availability of a large image set with 2D annotations for fine-tuning.
To address these issues, we develop a semi-supervised learning method that utilizes weakly
labeled object video sequences, which increase the diversity of training data with almost no
additional labeling cost.

Formally, we augment the original 2D annotated image dataset D,, with a set of short ob-
ject video sequences D,4. Each video sequence v in D, has J frames, i.e., v={I!,--- I/}
The core of our approach is a new loss function that integrates both 2D re-projection errors
on Dy, as well as temporal and multi-view consistency of 3D predictions on D,;;. We now
introduce these two loss terms below.

3.2.1 2D Re-projection Loss

Given the 2D image dataset Dy, we denote the 2D annotations as X¢¢. The re-projection
loss is defined by the squared L? distance between the 2D projection of the estimated 3D
object keypoints and the 2D annotations,

1Dl K
Lip (Q) =} IP(R;
i=1 k=
where Q denotes the parameters of our network model (omitted in the right-hand side for
clarity), i is the index of the training images in Dy, and || - || is the L? norm.

d
04 1Sk + T7) — X513 )
1

3.2.2 YVideo Consistency Loss

For each video sequence, we assume all frames share the same underlying object structure
a‘ and camera focal length f¢, which is reasonable for rigid objects and short videos. Our
video consistency loss enforces a temporally coherent 3D interpretation for each sequence,
and consists of three terms, including a structure consistency loss, a motion smoothness loss
and a 2D projection loss.

The structure consistency loss encodes the constraint that the 3D object structure is stable
within each video due to its rigid property. In each video, we treat the underlying object
structure and focal length as latent variables, denoted as h = {a€, f°}. We then minimize
the differences between the structure estimation at each frame and the latent variables over
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the entire video,
J _ ‘ J ‘
Ly (Qh) =wq Y |l&/ —aclli+wr Y |17 = fIh 3)
j=1 j=1

where wq and wy are the weights for object structure and camera focal length, respectively,
and || - ||; is the L' norm.

The motion smoothness loss assumes the camera pose changes slowly within each video
sequence, and we minimizes the changes between neighboring frames,

J=1 J
Lins () =wg Y v/ —x/||; +wr
Jj=1 J
where wg and wr are the weights for rotation and translation respectively.

In addition to the 3D loss terms, we also include a 2D re-projection loss that enforces the
projection of 3D keypoints to be consistent with the 2D heatmaps predicted by the hourglass
module. This 2D loss term is based on empirical observation that the estimated 2D heatmaps
are usually more reliable and can be used to regularize the 3D estimation. Specifically, we
first pass the predicted heatmaps through a softmax layer to get a confidence map at each
pixel location. For the frame I, we denote the confidence values in the location of our 2D

keypoint prediction as {c; ,}_,, and define the 2D loss as

—1
I -t 4)
=1

J N
Ly (Q) =wp Y Y cjnllXjn—Xjn, 1% 5
j=1n=1

where wyp is the weight parameter, Xx; , is the re-projected 2D locations of the n-th keypoint
(based on Eqn 1) and X, is the corresponding 2D heatmap peak location.

Our overall loss function for the semi-supervised learning is defined by weighted average
of video consistency loss defined on the video set and the 2D Re-projection loss defined on
the annotated 2D image set. Let H = {h"|v € D,;; } be the latent variables of all sequences,

L () = wip * Ly (Q) + H}_}nLvid (Q,H) (6)
Lig(QH) =Y (L, (QhW)+L, (Q)+L),(Q) (N
vED, iy

where wy,, is the weight to balance the 2D and video datasets.

3.2.3 Model Learning

During the training process, we optimize the overall loss by iteratively updating Q and H in
the loss function. Specifically, we first fix an initial £ pretrained with Ly, only and update H.
In our case, we solve the L' loss optimization problem in Eqn 3, which amounts to updating
ac and f¢ by taking median of -/ and f/ at each dimension, respectively '. Then we update
Q with respect to fixed h by computing the gradients.

Instead of using a fixed length of video during training, we explore a curriculum learning
strategy in our semi-supervised learning with videos. Specifically, we generate a series of
training sets using video sequences with gradually increasing lengths, and train the model in
multi-steps starting from short sequences. Concretely, we build training sets of videos with
length 3, 7, 11 and 15 respectively. We first train on the dataset with 3 video frames and

'Empirically, we found that we can speed up the learning by relaxing Eqn 3 to an L? loss optimization problem
and updating H by taking average of network outputs across video frames in the initial stage of training.
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Keypoint-5

Figure 2: Examples of Keypoint-5 and IKEA. Note that these two datasets have very
different background and viewing angles.

save the best model during training. We then retrain this model on data batches with 7 video
frames, and gradually step forward to training on the datasets with 15 video frames.

4 Experiment

We evaluate our method quantitatively on two challenging 2D image dataset, IKEA [19]
and PASCAL3D+ [32]. Additionally, we conduct a set of ablation study to analyze the
components of our model and learning strategy.

We use three datasets for training our 3D object interpretation network: in addition to
the 2D Keypoint-5 and synthetic datasets from [30], we build a new weakly labeled object
video dataset from the ObjectScan [8] database.

4.1 Datasets and Metrics

Keypoint-5: We pre-train and validate our hourglass module on Keypoint-5 for 2D keypoint
estimation. Keypoint-5 is a relatively small dataset which contains 5 categories, including
bed, chair, sofa, swivel chair, and table. Each category has 1,000 to 2,000 images, of which
80% are for training and 20% are for validation. We use the median of annotations as the
ground truth. In the semi-supervised learning, we also include the Keypoint-5 dataset for
computing the 2D re-projection loss in Eqn 2.

Synthetic data: For training the 2D-to-3D module, we generate 40,000 objects for training
and 1,000 for validation. Given a specified range for each parameter of our 3D model and
camera pose, we first randomly sample a model parameter from a Gaussian distribution and
then project the 3D locations to get 2D keypoints. The pairs of 2d keypoints and 3D model
parameters are used to pre-train the 2D-to-3D module.

Object videos: We build our weakly labeled object video dataset from a large database of
object scans [8], which contains more than ten thousand 3D scans of real objects acquired
by PrimeSense camera. We select a subset of RGB sequences for three categories, including
chair, sofa, table, and divide them into training and test set. The original frame rate is 30Hz
and we subsample them to SHz. For each training sequence, we select 36 continuous frames.
In our experiments, we use 91 sequences of chair class, 52 of sofa class, and 30 of table
class for training and 15 sequences of each class for qualitative evaluation in testing.

IKEA dataset: IKEA dataset contains four object classes: chair, sofa, table and bed, which
have 195, 164, 202 and 61 images respectively. Here we focus on the class of chair, sofa
and rable due to lacking of video data for bed class. The annotations include structure and
rotation of the object in each image. Fig 2 shows a few examples of Keypoint-5 and IKEA
data. Unlike Keypoint-5, the objects in IKEA dataset can be heavily occluded.

PASCAL3D+: PASCAL3D+ dataset [32] contains 12 categories of the PASCAL VOC 2012
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Average recall %
IKEA Chair IKEA Sofa IKEA Table
Method
Structure | Pose | Structure | Pose | Structure [ Pose
Zhou-perp [36] 60.76 - 58.02 - - -
Su [25] - 37.69 - 35.65 - -
3D-INN [30] 87.84 63.46 88.03 64.65 85.71* 55.02
Li[18] 89.9 - 83.4 - - -
Ours 89.68 71.25 92.66 71.40 88.52 56.64

Table 1: 3D structure and pose estimation results on IKEA dataset. * is generated from the
code released by the authors.

dataset and part of images from ImageNet, which are augmented with 3D annotations. In our
experiments, we use the dataset to evaluate the performance for pose estimation. We report
our results on the validation sets of chair and sofa of PASCAL VOC 2012, which include
642 and 336 images respectively.

Evaluation metric: For evaluating 3D structure estimation, we follow the protocol in [30],
which first computes the root-mean-square error (RMSE) between predictions and ground
truth, and then calculates the average recall of the keypoints using a range of minimum devi-
ation thresholds. For pose estimation, we use the absolute error of azimuth angle predictions
and also calculate the average recall by the same procedure.

Implementation Details: We first train the one-stack hourglass module on Keypoint-5 to
generate 2D keypoint predictions as heatmaps, and then train our 2D-to-3D module on syn-
thetic data to predict 3D parameters from the heatmaps. We combine these two modules and
finetune the full network on Keypoint-5 to get our baseline model. For our semi-supervised
learning setting, we freeze the 2D prediction module and train the rest of our model on videos
and Keypoint-5 data. We use the RMSprop for optimization, a maximum of 300 epochs in
training, and 8¢ — 6 as the learning rate. No dropout layers are applied to the 2D-to-3D
module.

To determine the video length M, we validate on a set of lengths in {3,5,7,9,11,13,15}
frames. For curriculum learning, we incrementally train our model with video length of
{3,7,11,15}, each of which takes 50 epochs. Additionally, we validate our model hyperpa-
rameters on Keypoint-5 by a grid search. The final weights for our loss {wy,,wq,ws,wg,wr}
are set to {1, 10000, 10000, 50,50, 150} throughout the experiments.

4.2 Results on IKEA and Video Dataset

Given the trained 3D object interpretation networks, we first conduct our evaluation on three
categories, chair, sofa, and table in the IKEA dataset. The quantitative results are summa-
rized in Table 1, in which we also include the reported performances of four prior methods.
It is evident that our approach achieves significantly higher average recall than other ap-
proaches and consistently across all three categories.

In particular, our method outperforms the recent state of the art [30] in both structure and
pose metric despite that we add only a small set of additional short videos (fewer than 100
per class) in training. This shows that the video set does effectively improve the diversity
of the training data and narrows the domain gap between the original training (based on
Keypoint-5+synthetic data) and the challenging test cases in the IKEA dataset.
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Figure 3: Qualitative results on IKEA. Each row: Top: input image; Middle: baseline
results; Bottom: our results.

We also visually compare our results with baseline model as shown in Figure 3 for the
IKEA dataset and Figure 4 for our video dataset. We can see that our method generates
much better results compared to the baseline. In particular, our method perform well even
under heavy occlusion (e.g. chair and table), and it can also deal with multiple instances and
cluttered scenes.

We note that each frame of a video sequence has a slightly different 2D projection, self-
occlusion and background caused by gradual change of the camera viewpoints. Due to lack
of sufficient training data, the 2D keypoint estimation module may fail to produce consistent
predictions under these variations. The keypoint errors generated by the 2D module then
propagate to the 2D-to-3D module and lead to unstable structure predictions in the baseline
model. Our semi-supervised learning strategy allows the 2D-to-3D module to cope with the
inaccurate 2D estimations in a more robust manner and thus produces better 3D predictions.

4.3 Ablation Study

To understand the effect of each module in our approach, we conduct an ablation study to
investigate their contributions towards the final performance. We consider three different
variations of our method: 1) Baseline, which is our model trained with Keypoint-5 and
synthetic data only in the same way as the 3D-INN [30]; 2) Video, which is our model
trained with all three datasets, including the weakly labeled video sequences (of a fixed
length); 3) Video+Curriculum learning, which is the full model with both semi-supervised
and curriculum learning.

Table 2 shows the comparisons between three different variants of our method on the
chair and sofa class. Our Baseline model has already outperformed the original 3D-INN
due to its better 2D keypoint estimation module based on the hourglass. Our Video model
outperforms the Baseline model consistently in both metrics and classes, which indicates
that the semi-supervised learning plays an important role in improving the average recalls.
Moreover, we found the curriculum learning can slightly improve the model by gradually
adding more challenging training examples, which achieves the best overall performances
with less overall training time (two thrids of the vanilla Video model learning). We note that
our approach achieves the performance gains with a moderate-sized video dataset and expect
that overall performances would increase with more training video sequences.

4.4 Results on PASCAL3D+ Dataset

To demonstrate the generality of our method, we also evaluate our trained models on the
PASCAL3D+ dataset [32] for object pose estimation. Note that we only train the models
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Figure 4: Qualitative results on our video dataset. Each row: Top: input video frames;
Middle: baseline results; Bottom: our results.

Average recall %

IKEA Chair IKEA Sofa
Method
Structure | Pose | Structure | Pose
Baseline 87.93 68.14 91.39 68.67
Video (ours) 89.60 70.51 92.34 71.19
Video+Curriculum learning (ours) 89.68 71.25 92.66 71.40

Table 2: Ablation study on 3D structure and pose estimation using IKEA chair and sofa
dataset. We compare the results of three variants of our models. See the text for details.

Method | VDPM [32] | DPM-VOC+VP [23] | Su[25] | V&K [28] | 3D-INN [30] | Baseline | Ours
Chair 6.8 6.1 15.7 25.1 23.1 25.0 25.8
Sofa 5.1 11.8 18.6 43.8 45.8 46.2 47.3

Table 3: Pose estimation results on PASCAL3D+. Our method achieves the state-of-the-art
performance.

using the Keypoint-5, synthetic and video dataset as described before and directly test them
on the PASCAL3D+ dataset. We adopt the standard R-CNN [12] for object detection. As
shown in Table 3, our model outperforms all other methods on both chair and sofa class.
We also show the results of our base model for ablative study. Our model outperforms 0.8%
on chair class compare to our base model, and 1.1% on sofa class, which demonstrates the
effectiveness of our semi-supervised learning method.

5 Conclusion

We have developed a semi-supervised learning strategy to address the problem of joint 3D
object structure and camera pose estimation from a single monocular image. Our method
exploits weakly labeled video data, which can be obtained at relatively low cost, to improve
the robustness of the resulting 3D object interpretation models. In contrast to the existing
methods, our 3D object interpreters are capable of handling large variations in viewing angle,
occlusion and background clutter. The experiment evaluation on the IKEA, PASCAL3D+
and our new object video dataset shows that our approach achieves the state-of-the-art per-
formance in both structure and pose estimation.
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