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This supplementary material includes additional details
on three aspects of our work:

(i) The supervoxel dense CRF model, including the ker-
nels in the pairwise term and the mean-field equations.
(i1) The full pipeline of object trajectory proposal genera-
tion.
(iii)) Benchmark datasets and experimental results on time
complexity and model scalability.

Some examples of our video parsing result are also attached
in the zip file.

1. Dense CRF details
1.1. Pairwise term in the supervoxel dense CRF

The mathematical form of our dense pairwise term is de-
fined as follows :
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where I; is the averaged color feature for supervoxel ¢ in
CIE-LAB space and p; is the central position of supervoxel
i in spatio-temporal domain. 0., 0, 03 are widths of Gaus-
sian kernels, and o, and «, are weighting coefficients.

1.2. Mean-field updating equations

We introduce the updating equation for supervoxel node
in Eq (9). The rest of the updating equations for object and
their relation nodes are derived as follows :
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where (), denote the expectation with respect to g and p =
{m,n}. Note that these two terms are summed over sparse
connections, which can also be efficiently computed when
the number of object and relation nodes is moderate.

2. Object proposal generation

We generate the object trajectory hypotheses in the fol-
lowing three steps, similar to [2].

1. We detect object instances and generate their masks
in a sparse set of key frames based on an exemplar
SVM [3] detector. We use only a small number of ex-
amples (10-20).

2. We propagate the static proposals to the entire video
chunk in both forward and backward way. We compute
an affine transformation of each object mask for neigh-
boring frame pairs based on the dense pixel trajectories
from [5]. A non-maximum suppression is then applied
to remove redundant proposals from inaccurate trajec-
tories based on match scores of object mask and inten-
sity edges.

3. We extend the propagated object masks to longer ob-
ject trajectories. We construct a directed graph on
the object proposals from all the frames, in which an
edge connects two proposals if they are from consec-
utive frames, share the same category and are signif-
icantly overlapped. The edges follow the time di-
rection. Given the directed graph, we use depth-first
search to generate all possible paths starting from those
earliest static proposals.

3. More details on experiment
3.1. Dataset summary

We test our model on three video segmentation datasets.



Class Car Pedestrian Bicyclists
Threshold | -1 -09 | -0.85 || -0.95 | -09 | -0.85 || -0.95 | -0.9 | -0.85
Precision | 17.9 | 76.4 | 88.4 5.8 77 | 17.8 4.1 10.8 | 224

Recall 66.5 | 63.2 | 558 65.0 | 554 | 289 70 583 | 414

Table 1: Pixe-level precision/recall rate on CamVid test set in three foreground object classes. The recall rate of Pedestrian and

Bicyclists increase significantly with lower thresholds, which may lead to more accuracy improvement in these two classes.
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Figure 1: Scalibility with more proposals from a single class. Left: Pedestrian; Right: Car. Our proposed methods benefits from richer

proposal pools while selecting much fewer proposals.

e CamVid [I] consists of 5 video sequences captured
during the daytime and dusk. These sequences are
sparsely labelled at 1Hz with 11 semantic classes. We
follow the data split in [1] for training and test.

e MPIScene [6] consists of one sequence with 156 an-
notated frames and 5 semantic classes. We follow the
set-up in [4].

e DynamicScene [7] consists of 176 sequences with 11
successive image frames each, and the last frame of
each sequence is labelled with 8 classes. We test our
model on the same test set as [7].

3.2. Scalability results on other classes

We use the same setting as in Bicyclist class, in which we
lower the thresholds of object detectors to generate more
proposals. We summarize the precision/recall rate in Ta-
ble 1 on CamVid test set.

Figure 1 shows the results for class Pedstrian and class
Car. We can observe the same trend as in class Bycyclists.
Note that as the precision/recall does not change much un-
der the pre-defined thresholds in C'ar, we test our methods
with more proposals under threshold of (—1, —0.9, —0.85)
instead. The improvement shown in the right panel of Fig-
ure 1 is similar to the other two classes.

3.3. Runtime complexity

We compare the average inference time in second (s) for
video segments in Camvid with different lengths, includ-
ing 61, 121 and 241 frames, in Table 2. Here we apply Q-
learning method to obtain the results but the LocalC method
has similar runtime efficiency. We can see that Q-learning
is more efficient than the full model.

Full Model Our Method
# of Frames | # of Subgraphs | Time(s) | # of Subgraphs | Time(s)
61 21.6 2.6 6.7 1.5
121 40.9 7.8 10.4 3.0
241 81.6 15.3 18.2 5.4

Table 2: Average number of subgraphs and running time to per-
form inference on different lengths of videos in CamVid.

3.4. Results on other dataset

On MPIScene dataset, we use 10 exemplars for Vechile
detector, which is applied every 10 frames. On Dynam-
icScene dataset, we annotate 10 exemplars to train exem-
plarSVM detector for C'ar and apply detector to the first
and last frame for each chunk.

We show the active inference result on the Dynamic-
Scene dataset in Figure 2. We can see that our method can
achieve better performance with only one-third of the pro-
posals.

0.696

—LocalC
0.694 | —— G-leaming

Original

Average Per-Class Accuracy in DCRF

o o o = o
=g @ o @ @ =4 @
@ & @ o -3 >3 <
& R ES ) 3 < N

o 2 4 5 s 0 12
Number of Selected Subgraphs

Figure 2: Active inference results on DynamicScene dataset. The
cross signs show when the algorithm stops.
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