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Abstract. Building 3D scene models has been a longstanding goal of Computer
Vision. The great progress in depth sensors brings us one step closer to being
able to achieve this in a single shot. However, depth sensors still produce im-
perfect measurements that are sparse and contain holes. While depth completion
aims at tackling this issue and producing dense depth maps, it ignores the fact
that some regions in the observed data do not belong to the scene itself, but rather
to foreground objects occluding the scene. Building a scene model would there-
fore require to hallucinate the depth behind these foreground objects. In contrast
with existing methods that either rely on manual input, or have focused on the
indoor scenario, here, we introduce a fully-automatic method to jointly complet-
ing and hallucinating depth and semantics in challenging outdoor scenes. To this
end, we develop a two-layer model representing both the visible information and
the hidden one. At the heart of our approach lies a formulation based on the
Mumford-Shah functional, for which we derive an effective optimization strat-
egy. Our experiments evidence that our approach can accurately fill the large
holes in the input depth maps, segment the different kinds of objects observed in
the scene, and hallucinate the depth and semantics behind the foreground objects.

1 Introduction

Building 3D models of real scenes has been a longstanding goal of computer vision.
While impressive results can be achieved with multi-view and video-based approaches [1–
4], the progress of depth sensors, and their decreasing prices, make them an attractive
alternative, able to capture 3D in a single shot [5]. Unfortunately, even the best depth
sensors still provide imperfect measurements. In particular, these measurements are of-
ten sparse and contain large holes due to various factors, such as reflective surfaces or
too-distant portions of the scenes.

Overcoming these limitations has therefore recently become a popular research
topic. For instance, depth super-resolution [6–11] tackles the sparseness issue and at-
tempts to densify the observed depth data. Typically, however, existing methods assume
that the measurements are regularly spaced, and are thus ill-suited to handle large holes.
By contrast, depth completion or inpainting [12, 13] are designed to handle irregular
measurements and fill holes in the input depth maps by leveraging RGB image infor-
mation, or fusing multiple depth measurements [14]. These methods, however, simply
complete the observed data. As a consequence, they are ill-suited to build a model of a
scene, where one is typically not interested in modeling the foreground objects, such as
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cars and pedestrians in the outdoor scenario. To address this problem, one should truly
hallucinate the depth behind the observed foreground objects.

Only little work has been done to tackle the task of depth hallucination from a noisy
depth map and its corresponding RGB image [12, 13, 15, 16], and existing methods typ-
ically work under additional assumptions. For example, [12, 13] rely on a user-defined
foreground mask to hallucinate the background depth. The method in [15] relies on a
layered depth model simply assuming that each layer is a smoothly varying surface,
thus not considering semantics or image information. While [16] exploits image and
semantics, it relies on CAD models to represent the foreground objects. Furthermore,
both methods were designed for the indoor scenario, and are thus ill-suited to handle
complex outdoor scenes.

By contrast, in this paper, we introduce a fully automatic approach to performing
depth completion and hallucination for general (outdoor) scenes in a single shot. To this
end, we develop a two-layer scene model accounting for the visible information and the
hidden one. In each layer, we jointly estimate the depth and the semantics of the scene.
Not only does this let us leverage depth to detect the foreground objects, but it also
allows us to exploit the dependencies between depth and semantics to improve comple-
tion and hallucination. As evidenced by Fig. 1, our approach lets us accurately fill the
large holes in the input depth maps, segment the different kinds of objects observed in
the scene, and hallucinate the depth and semantics behind the foreground objects.

Specifically, we rely on the assumptions that depth is piecewise planar, semantics
piecewise constant, and that the discontinuities of both modalities should coincide. We
show that these assumptions can be formalized with a single Mumford-Shah functional.
We then formulate the task of jointly completing and hallucinating depth and semantics
as a discrete-continuous optimization problem whose variables encode a foreground-
background mask and two layers of depth and semantics information: one for the data
that is visible in the image/depth map and one for the data that is hidden behind the
foreground. Following an alternating optimization strategy, we show that each type of
variables has an elegant solution; the discrete ones can be computed via simple thresh-
olding, and the continuous ones via a primal-dual algorithm implemented on the GPU.
Altogether, this provides us with an effective framework to build scene models from
a single noisy depth map and its corresponding RGB image despite the presence of
undesirable foreground objects.

We demonstrate the effectiveness of our approach on two datasets, i.e., KITTI [17]
and Stixel [18]. Our experiments evidence that our method can produce accurate models
of complex outdoor scenes without requiring any manual intervention. This, we believe,
constitutes a significant step towards making 3D scene modeling in real, dynamic envi-
ronments practical.

2 Related Work

With access to depth sensors becoming easier everyday, increasingly many methods rely
on depth as input for various applications, such as autonomous driving [17], augmented
reality [19] and personal robotics [20]. Unfortunately, depth sensors are not perfect; they
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Fig. 1. Our approach. Given an input RGB image and a noisy, incomplete depth map, we com-
plete and hallucinate depth and semantic to produce a complete scene model. First row: Input
RGB image, incomplete depth measurements, estimated semantics; Second row: completed depth
for the visible layer, hallucinated depth and semantics for the hidden layer.

typically produce relatively sparse measurements with large holes in highly reflective
regions, or in areas that are too far away from the sensor.

Depth super-resolution attempts to overcome the sparseness issue by generating a
high-resolution depth map from a low-resolution one. This is typically achieved via
Markov Random Fields [6, 21, 7], bilateral filtering [22], layered representations [23],
patch-based approaches [10, 11], or depth transfer [8, 9]. These approaches, however,
inherently assume to have access to regularly-spaced depth measurements, and thus
cannot handle large holes in depth maps.

By contrast, depth completion techniques have been designed to work with irregular
measurements and to fill in large holes. In this context, Liu et al. [24] combine a mod-
ified fast matching method with guided filtering to inpaint Kinect depth maps. In [25],
image segmentation is exploited to complete range data. Herrera et al. [26] propose an
MRF with second-order prior to inpaint piece-wise planar depth maps. In [27], depth
completion is formulated within a total variation framework where image information
is encoded in an anisotropic diffusion tensor to guide the completion process. A dif-
ferent approach to depth completion consists of treating a depth map as an intensity
image, and rely on standard image inpainting algorithms, such as [28] and [29]. All
the above-mentioned methods focus on depth completion form a single view and aim at
completing the visible scene information, not hallucinate depth in the hidden parts. By
contrast, some approaches have proposed to exploit multiple views [30, 14] and thus can
handle the fact that parts of the scene are hidden in some views, albeit not all of them.
Similarly, great progress has been made in building complete scene models by fusing
multiple noisy depth maps [31–33]. These methods, however, assume to have access to
multiple input depth images. Furthermore, and more importantly, they assume that the
scene is static, and that no foreground objects occlude the scene to be reconstructed.

Only little work has been done on the problem of building a complete scene model
in one shot, despite the presence of occluding objects. Guo and Hoiem [34] focus on
semantic labeling of unseen surfaces without depth information. In the context of stereo
matching, Bleyer et al. [35] introduce a method that hallucinates depth in the regions
that are occluded in one view, but not in both. In [12, 13], while the goal is indeed
to replace the depth of foreground objects with that of the background, the methods
assume to be given a perfect foreground mask, defined by a user. As a consequence,
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these approaches truly perform depth completion, albeit without the knowledge of the
RGB intensity behind the foreground mask. By contrast, [15] and [16] work without any
manual input. In [15], a layered scene model is introduced, where each layer is simply
represented by a smoothly varying surface, without making use of RGB or semantics
information. In [16], semantics and image information is used, but the method relies on
CAD models to represent foreground objects. Furthermore, in both cases, the methods
were designed for the indoor scenario, and are thus ill-suited to model complex outdoor
scenes, which are typically much more challenging.

In this paper, we introduce a fully-automatic approach to jointly completing and hal-
lucinating depth and semantics. Our approach is generic, in that it does not assume the
availability of additional information, such as CAD models. Furthermore, as demon-
strated by our experiments, it can handle complex outdoor scenes, with strong depth
and semantics discontinuities.

A key component of our approach is the use of a Mumford-Shah functional [36],
which defines a non-convex energy function that encourages piece-wise constant so-
lutions. Strekalovskiy and Cremers [37] develop a real-time primal-dual algorithm for
minimizing the Mumford-Shah functional with a single variable, which we use and
extend in this paper. Furthermore, our work relies on the piece-wise planar world as-
sumption [38]. Despite its simplicity, it has been widely adopted in modeling outdoor
man-made scenes [39, 40]. Our work also relates to 3D scene understanding, where
joint semantics and depth prediction has been explored, e.g., [41]. However, to the best
of our knowledge existing methods do not recover hidden surfaces.

3 Our Approach

Given partial depth measurements, including sparse, irregular observations and large
holes, and a corresponding intensity image, our goal is to produce a complete scene
model with background depth at every pixel, including those that are hidden by fore-
ground objects, and background semantics. To this end, we therefore need to simulta-
neously perform depth completion, reason about semantics, and hallucinate the back-
ground depth and semantics behind the observed foreground objects.

To achieve this, we introduce a two-layer scene representation modeling the visible
information and the hidden one. Each layer consists of two modalities: depth and se-
mantics. In the remainder of this section, we first focus on the visible layer and then
complement it with the hidden one. The resulting model is encoded by a discrete-
continuous optimization problem. In Section 4, we develop an optimization procedure
to minimize the corresponding energy, thus allowing us to jointly complete and hallu-
cinate depth and semantics.

3.1 A Visible Layer for Semantics-aware Depth Completion

We first focus on modeling the information that is visible in the input data. Our goal
here is to jointly predict the depth and semantics in every pixel of the input image given
incomplete depth measurements and an intensity image. To achieve this, we assume
that the underlying scene is piecewise planar and the corresponding semantic label map
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piecewise constant. Furthermore, we rely on the intuition that the depth discontinuities
are often aligned with the boundaries of semantic classes, which lets us exploit the
semantics to further regularize depth completion.

Let I be an input image of sizem× n and x ∈ Ω denote a pixel location on the two
dimensional image planeΩ. We associate each pixel with two variables encoding depth
value and semantic label, respectively. The semantic label sv(x) ∈ RL is represented
as an L-dimensional vector for L classes. As for depth, in this work, we make use
of a disparity-based representation.1 The motivation behind this is the following: Let
yv(x) ∈ R be the disparity value at pixel x. This disparity value can be equivalently
encoded by plane parameters uv(x) ∈ R3, since we can write yv(x) = p(x)Tuv(x),
where p(x) = (xT , 1)T is the homogeneous coordinate representation of x. Then, our
piecewise planar assumption of the depth map, which is equivalent to a piecewise planar
assumption of the disparity map, can be encoded by a piecewise constant assumption
on the plane parameters. This therefore allows us to define a unified Mumford-Shah
functional on uv and sv , which simultaneously encodes our two initial assumptions.

The Mumford-Shah functional [36] was originally introduced to compute a piece-
wise smooth approximation of observed data. In our context, let us denote by {yo(x)}x∈Ω
the incomplete disparity measurements, with disparity observation mask {d(x)}x∈Ω ,
where d(x) = 1 if the disparity measurement at pixel location x is valid, and 0 other-
wise. Furthermore, let so(x) be a noisy label probability distribution at pixel x, obtained
by any image-based semantic labeling method. Our goal therefore is for our visible layer
to fit the observed data, and thanks to our change of variable, that both uv and sv are
piecewise constant while having their discontinuities aligned. This can be expressed by
a coupled Mumford-Shah functional of the form

Ev(u
v, sv) = Ed(u

v, sv) + Er,v(u
v, sv) , (1)

where Ed(uv, sv) is the data fidelity term, and Er,v(uv, sv) denotes the regularization
term that jointly encodes the piecewise constant and aligned discontinuities assump-
tions. We now describe these two energy terms in details.
Data term. The data term encourages the disparity and semantic label predictions to
be consistent with the incomplete disparity measurements and the noisy semantic label
probabilities. This can be expressed as

Ed(u
v, sv) =

∑
x∈Ω

d · (pTuv − yo)2 + ηd
∑
x∈Ω
‖sv − so‖2 . (2)

where ηd is a weight that balances the influence of depth and semantics.
Regularization term. The regularization term encourages both uv and sv to be piece-
wise constant while having their discontinuities aligned. Following the Mumford-Shah
formalism, we express this as

Er,v(u
v, sv) = ηrv

∑
x∈Ω

min(α1‖Kuv‖2 + ‖Ksv‖2, λ1) , (3)

where ηrv and α1 are parameters controlling the strength of the smoothness and of
the coupling between the two modalities and λ1 is the truncation parameter. Here, we

1 Note that using disparity instead of depth does not really come at any loss of generality, since
they simply are the inverse of each other, up to a constant. If provided with depth measurements
for the image pixels, one can therefore easily convert them to pseudo-disparities.
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further rely on the oriented gradient operator K of [27], which computes an image-
adaptive gradient for each channel of uv and sv . More specifically, the oriented gradient
operator K at location x is defined by TI(x)∇, where TI is an image-based anisotropic
diffusion tensor. This tensor is defined as

TI = exp(−β|∇I|γ)nnT + n⊥n⊥T , (4)

where n = ∇I
|∇I| and n⊥ is the normal vector to the image gradient. Note that TI is a

symmetric matrix, and hence K = TI(x)∇ is a linear operator.

3.2 Adding a Hidden Layer for Depth and Semantics Hallucination

Recall that our goal is to produce a complete scene model from incomplete depth mea-
surements. While the functional introduced in the previous section can complete the
missing depth it still only represents the visible information. As such, it is unable to
infer the scene depth and semantics behind the foreground objects, which are not truly
part of the scene. To address this limitation, we incorporate a hidden layer that focuses
on modeling and hallucinating the depth and semantics of the background scene.

Formally, we split the semantic class set L into two subsets, one for the foreground
classes Lf and the other for the background ones Lb. At each pixel location x, we
introduce two additional variables, uh(x) ∈ R3 and sh(x) ∈ RL, which encode the
(potentially occluded) disparity value and semantic label of the hidden scene layer at
x. Furthermore, we define a binary variable m(x) indicating the foreground class mask
(i.e., where the hidden layer is invisible). In other words, for the pixels wherem(x) = 1,
there are neither disparity measurements nor semantic predictions for the hidden layer
variables uh(x) and sh(x). Note that this binary variable is not strictly necessary, since
this information can be extracted from the semantics variables. However, as will be
discussed in Section 4, introducing it makes the resulting problem easier to optimize.

To hallucinate the depth and semantics of the hidden scene layer, we rely on the
following assumptions/constraints: In the parts of the image that correspond to fore-
ground, 1) the hidden layer should be jointly piecewise constant in uh and sh; 2) given
training data, the hidden layer variables should follow the data statistics; 3) In the parts
of the image that correspond to background, the visible and hidden layers should agree;
4) The mask and the visible semantics should be coherent. Below, we formalize these
assumptions by defining a corresponding set of energy terms and linear constraints.
1) Piecewise constancy. Similarly to the visible layer, we define a regularization term
Er,h(u

h, sh,m) that encourages uh and sh to be piecewise constant and have aligned
discontinuities. Here, however, we only enforce this term on the foreground regions,
i.e., where m(x) = 1. This can be expressed as

Er,h(u
h, sh,m) = ηrh

∑
x
m ·min(α2‖∇uh‖2 + ‖∇sh‖2, λ2) , (5)

where ηrh and α2 are parameters controlling the strength of the smoothness and of the
coupling between the two modalities, and λ2 is the truncation parameter. As there are no
image cues for the hidden layer in the foreground regions, we use the standard gradient
to penalize the discontinuities.
2) Training data statistics. Given training data, we compute an average disparity map
for each background class k ∈ Lb, denoted by {ysk(x)}x∈Ω . We refer the reader to
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Section 5 for the details of this process. We then encourage the disparity and semantics
of the hidden layer to be consistent with this statistics, which can be expressed as

Es(u
h, sh,m) = ηs

∑
x
m ·

∑
k∈Lb

shk(p
Tuh − ysk)2 . (6)

where ηs is a weight defining the influence of this term.
3) Agreement between the two layers. These constraints can be directly expressed as

uh(x) = uv(x), sh(x) = sv(x), ∀x | m(x) = 0 , (7)

4) Coherent mask and visible semantics. We encourage the mask and the visible
semantics to agree by penalizing the discrepancy between the total probability mass of
foreground classes predicted by sv and the mask variable at every pixel. This can be
written as

Ec(s
v,m) = ηc

∑
x

( ∑
k∈Lf

svk −m+ b
)2
. (8)

where ηc is a weighting parameter and b is a bias value for the foreground class mask.
Altogether, our two-layer approach to completing and hallucinating depth and se-

mantics can be expressed as the discrete-continuous optimization problem

min
uv,sv,uh,sh,m

Ed + Er,v + Er,h + Es + Ec (9)

s.t. uh(x) = uv(x), sh(x) = sv(x) ∀x | m(x) = 0∑
k

svk(x) = 1, svj (x) ≥ 0,
∑
k

shk(x) = 1, shj (x) ≥ 0, ∀x, j

m(x) ∈ {0, 1}, ∀x

where Ed, Er,v , Er,h, Es, Ec are defined in Eqs. (2), (3), (5), (6) and (8), respectively.
The first two constraints come from Eq. (7), and the third and fourth ones encode the
simplex domain of probability distributions, and the fifth one the binary nature of m.

4 Optimizing our Two-Layer Model

The optimization problem encoding our two-layer problem, defined in Eq. (9), is chal-
lenging to solve, since it has a large number of coupled discrete and continuous vari-
ables. Fortunately, given the disparity and semantics, optimizing the mask is straight-
forward; the optimal mask value at each pixel can be computed in a closed form. Fur-
thermore, when the mask variables are given, the energy functional decomposes into
two subproblems: one for the visible layer, and one for the hidden one. These subprob-
lems correspond to multi-modal versions of the Mumford-Shah functional. An efficient
first-order primal-dual algorithm was introduced by [37] to tackle the single-modality
case. We show that this algorithm can be extended to address the multi-modal scenario.

We therefore adopt an alternating procedure to minimize Eq. (9). This procedure
consists of three steps repeated iteratively. In the first and second step, we optimize
w.r.t. the visible and hidden layer, respectively, and, in the third step, we update the
mask variables. Since our procedure decreases the energy functional in every cycle, it
converges to a local minimum. Below, we first review the first-order primal-dual algo-
rithm of [37] for solving the Mumford-Shah functional and then discuss the solution to
each step of our minimization strategy.
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Primal-Dual Algorithm for the Mumford-Shah Functional. The primal-dual algo-
rithm introduced in [37] aims to solve a non-convex optimization problem of form

min
y
D(y) +R(Ay) , (10)

where D(·) usually denotes a data fidelity term, and R(·) is the regularization term
encouraging piecewise smoothness in the Mumford-Shah functional. Let A denote a
linear operator, which can be the gradient operator ∇, or an oriented gradient operator
K additionally encoding image gradient information.

The primal-dual formulation introduces a dual variable q and solves the equivalent
saddle-point problem

min
y

max
q

D(y)+ < q,Ay > −R?(q). (11)

whereR∗ is the conjugate of the regularization term. Following the fast Mumford-Shah
method of [37], the primal-dual update equations can be written as

qn+1 = proxσn,R?(qn + αnAȳn), (12)
yn+1 = proxτn,D(y

n − τnA−1qn+1), (13)
θn = 1√

1+4τn
, τn+1 = θnτn, σn+1 = σn

θn
. (14)

ȳn+1 = yn+1 + θn(y
n+1 − yn), (15)

where prox·,·(·) denotes the proximal operator. The convergence [42] of this primal-
dual procedure for a convex problem depends on the parameter values τ and σ, which
must satisfy τσ‖A‖2 ≤ 1. For non-convex functional, [37] shows the algorithm gen-
erates a bounded solution with empirically convergence.

Our alternating procedure uses a similar primal-dual procedure to optimize the sub-
problems corresponding to the visible and hidden layers. These subproblems have a
specific functional form for D and R. However, they also rely on two modalities, u and
s. Below, we develop our algorithms for the visible and hidden layers, respectively.

4.1 Optimization w.r.t. the Visible Layer sv , uv

In this step, we fix the variables in the hidden layer uh, sh and the foreground mask m,
and optimize the subproblem defined on the visible layer. We also relax the consistent
constraints of Eq. (9) at this step. We will enforce the constraints after optimizing w.r.t
the visible and hidden layer. The resulting subproblem can thus be written as

min
uv,sv

Ed(u
v, sv) + Er,v(u

v, sv) + Ec(s
v,m). (16)

Note that the subproblem objective can be written in the standard Mumford-Shah func-
tional form when it is optimized w.r.t. either uv or sv . Therefore, to optimize this sub-
problem with the primal-dual algorithm, we further divide the task into two steps.
Optimizing uv with fixed sv . By fixing the semantic variable sv , we can write the
objective in Eq. (16) in the standard Mumford-Shah form, with

Duv (uv) =
∑
x
‖d(pTuv − yo)‖2 , (17)

Ruv (Kuv) = ηrv
∑
x∈Ω

min(α1‖Kuv‖2 + euv, λ1) , (18)
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where euv = ‖Ksv‖2. Here, ‖Ku‖2 :=
∑
j ‖Kuj‖2 denotes the Euclidean norm,

where uj is the j-th channel in the multi-channel variable u.
Optimizing sv with fixed uv . We then fix the disparity variable uv , and write the
objective in Eq. (16) in the standard form, which yields

Dsv (s
v) =

∑
x
ηd‖(sv − so)‖2 + ηc

∑
x
(fT sv −m+ b)2 , (19)

Rsv (Ksv) = ηrv
∑
x∈Ω

min(α1esv + ‖Ksv‖2, λ1) , (20)

where esv = ‖Kuv‖2, and f is a binary vector with 1s in the position corresponding to
the foreground classes and 0 everywhere else. The details of the derivation of proximal
operators are included in the supplementary.

4.2 Optimization w.r.t. the Hidden Layer sh, uh

Let us now fix the disparity and semantics of the visible layer uv , sv and the fore-
ground mask m, and optimize the functional w.r.t. the hidden layer variables uh, sh.
We consider the following equivalent subproblem

min
uh,sh

Es(u
h, sh,m) + Er,h(u

h, sh,m) + Ep(u
h, sh) (21)

Where Ep(·) is a regularization term with the following form:

Ep(u
h, sh) = γuh

∑
x
(1−m)(pTuh − pTuv)2 + γsh

∑
x(1−m)(sh − sv)2 (22)

Here γuh and γsh are large weights (usually 1000), and we essentially use a soft version
of consistency constraints to regularize the problem, which empirically produces a more
stable optimization step. Similar to the visible layer, we divide the optimization of this
subproblem into two steps.
Optimizing uh with fixed sh. Fixing the semantic variable sh, and writing the objective
in Eq. (21) in the standard form yields

Duh(uh) = γuh
∑
x
(1−m)(pTuh − pTuv)2 +m ηs

∑
j

shj (p
Tuh − ysj )2 , (23)

Ruh(∇uh) = ηrhmmin(α2‖∇uh‖2 + euh, λ2) , (24)

where euh = ‖∇sh‖2.
Optimizing sh with fixed uh. We then fix the disparity variable uh, and write the
objective in Eq. (21) in the standard form, which yields

Dsh(s
h) = γsh

∑
x
(1−m)(sh − sv)2 +m ηs

∑
j

shj (p
Tuh − ysj )2 , (25)

Rsh(∇sv) = ηrhm
∑
x∈Ω

min(α2esh + ‖∇sv‖2, λ2) , (26)

where esh = ‖∇uh‖2. We similarly include the details for the proximal operators in
the supplementary.

4.3 Adding Constraints and Updating the Foreground Mask m

After computing the visible and hidden variables without the constraints, we now project
them onto the constraint set defined in Eq. (9). The projection onto the consistent con-
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straint set is computed as sv = sh = sv+sh

2 and uv = uh = uv+uh

2 . For semantics sv ,
sh, we then project them onto non-negative quadrant and re-normalize them.

Given the semantic and disparity variables in the visible and hidden layers, the fore-
ground mask variables are decoupled into a set of independent variables for each loca-
tion x. The problem can then be re-written as

min
m

∑
x
w(x)m(x) , s.t. m(x) ∈ {0, 1}, (27)

where the weight w(x) is given by

w(x) = ηrh ·min(α2‖∇uh‖2 + ‖∇sh‖2, λ2) + ηs
∑
j

shj (p
Tuh − ysj )2 + ηc

(
1− 2(fT sv + b)

)
. (28)

Ultimately, m(x) = 1 if w(x) < 0, and 0 otherwise.

5 Experiments

To demonstrate the effectiveness of our approach, we evaluated our method on two
publicly available outdoor datasets: KITTI [17] and Stixel [18]. Below, we discuss our
results on both datasets.

5.1 Experimental Setup

Initialization. As mentioned in Section 3, we assume that the observed scenes are
piecewise planar. We therefore used SLIC [43] to produce an over-segmentation of the
image, and fit a plane to each superpixel using the corresponding sparse depth observa-
tions. We used the resulting plane parameters as initialization for uv for each pixel in
the superpixels. For large holes where no observations were available in the superpixels,
we initialized the plane parameters to zero.

To obtain an initial semantic segmentation of the image, we used the FCN-32s
model [44] followed by smoothing via a fully-connected CRF [45], which allowed us
to initialize sv and foreground mask m, as well as provides the observations so. We
initialize uh and sh from uv and sv and set the foreground regions to 0.
Ground-truth for the hidden layer. To the best of our knowledge, no ground-truth is
available for the hidden depth and semantics variables. To be able to provide a quantita-
tive evaluation of these variables, we generated the ground truth in two different ways:
(1) Mannual annotation. We first annotated the hidden semantic labels. We then filled
in the hidden depth using the planes fitted to the superpixels around the true foreground
mask based on the hidden semantics. In other words, we extend a plane surrounding a
large hole to the hidden region that has the same semantics as this plane.
(2) Depth map composition. We overlaid an object from a foreground image on an orig-
inally unoccluded scene (background image). Since the camera intrinsics are roughly
the same for both images, the depth map would be consistent after adding the object in
the same location as in the foreground image.
Co-occurence statistics. To obtain the class-dependent disparity statistics {ysk} in Eq. (6),
we followed the intuition that semantics are often highly correlated with image location.
This intuition was exploited, for example, in [46] for depth prediction, and can be illus-
trated by the fact that sky pixels are typically at the top of the image, while road ones
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are usually at the bottom. To this end, we follow a superpixel-based approach. For each
superpixel j in the test image, we take the plane parameters of the corresponding pixels
in all the training images. For each class k, we then cluster these plane parameters, and
take the cluster center with largest size. We finally generate ysk as the disparity obtained
from the plane parameters of this center.
Baselines. Note that our scene model consists of two layers. For the visible layer, depth
estimation translates to the usual depth completion problem. We therefore compare the
results of our visible layer with the of the classical method of [29], and with the more
recent technique of [27].

For the hidden layer, since no other has tackled the outdoor scenario in a fully-
automatic manner, we rely on the following two-stage strategy. We first generate a
foreground mask using the state-of-the-art semantic labeling method consisting of the
FCN-32s model [44] followed by a smoothing with a fully-connected CRF [45]. Let us
denote by Fg-Mask this foreground mask and by Bg-Mask the remaining image pixels.
In Bg-Mask, the appearance is known, and thus the same depth completion methods
as before can be employed. In Fg-Mask, however, no appearance information about
the background is available. We therefore apply the technique of [28] to inpaint this
area, which, to the best of our knowledge, remains the most mature method when it
comes to depth completion without intensity information. This yields two baselines,
which we will refer to as Baseline-1 (semantic segmentation followed by [29] + [28])
and Baseline-2 (semantic segmentation followed by [27] + [28]). To compare the differ-
ent algorithms, we make use of the following metrics:1) visible-rmse: the-root-mean-
square-error (rmse) for the entire depth map; 2)hidden-rmse: the rmse for the depth map
hallucinated underneath the ground truth foreground mask.
Model Parameters. We estimated our parameters using the 10 validation images with
annotated ground truth. This resulted in α1 = 1, λ1 = 100, ηd = 0.1, for visible
layer and α2 = 0.01, λ2 = 1 ηs = 0.004, ηc = 1, b = 0.1 ηc = 1, b = 0.1 for hidden
layer. Recall that the plane parameters are initialized to zero in large holes. We therefore
start with a high regularizer weight ηrv = 10000 and reduce its value iteratively to
ηrv = 0.1 by a fixed step size. The same strategy is applied to ηrh.

5.2 Results on KITTI

As a first dataset, we utilized three subsets of the KITTI data annotated with semantic
labels and/or disparity maps, and provided by (i) Ladický et al. [47], i.e., 60 aligned
images, with dense disparity map and accurate semantic labels; (ii) Xu et al. [48], i.e.,
107 images with accurate semantic labels; and (iii) Ros et al. [49], i.e., 146 images
with accurate semantic labels. Note that only Ladický et al. [47] provide ground-truth
disparity maps. However, this data is constrained in terms of the scene types it depicts,
i.e. mostly residential areas. To make our evaluation more meaningful, we therefore
only used 40 of these images as test images, complemented by 14 images from the other
subsets. To obtain the ground-truth disparity maps for these 14 images, we employed
the MC-CNN-acrt stereo matching algorithm [50], which ranks at the top in the KITTI
stereo challenge2. To avoid biasing our conclusions with these different types of ground-

2 Although it does not rank first, it is fast and easy to use.
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Fig. 2. Qualitative results on the KITTI dataset. For the disparity values, red denotes large
values, and blue denotes small disparity values. From top to bottom: RGB image, ground-truth
visible disparity map, sparse observations with large holes, our completed disparity map, two
baselines, ground truth disparity for the hidden layer, our disparity for the hidden layer, and
two baselines. Note that our method can remove the foreground as well as accurately fill in the
background disparity behind the foreground objects. Compared to the baselines, our approach
can better complete the disparity for the visible and hidden layers.

truth, we report results on the entire set, test − 54, and on the two subsets, sub − 40
and sub − 14, respectively. To further evaluate our method on Manhattan and non-
Manhattan structures, we partitioned the data according to Manhattan (MH: 35 images)
vs Non-Manhattan (NMH: 19 images) scenes. The remaining images from the three
subsets were split into 200 for training and 59 for validation. We further mapped the
label spaces to 9 classes and fine-tuned the FCN-32s of [44] to these 9 classes using
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visible-rmse test-54 sub-40 sub-14 MH NMH hidden-rmse test-54 sub-40 sub-14 MH NMH
Ours 5.15 5.53 4.07 4.88 5.66 Ours 10.56 10.43 11.08 10.1 13.4
[29] 5.42 5.67 4.68 5.49 5.28 Baseline-1 13.29 11.85 17.92 11.7 21.4
[27] 5.38 5.60 4.77 5.41 5.34 Baseline-2 12.53 11.37 16.34 11.3 19.1

Table 1. Depth estimation. Quantitative comparison with several baselines for the visible and
hidden depth, respectively.

veg road building sky sidewalk polar fence class-avg. pixel-avg
73.6 51.52 85.07 16.64 16.97 3.61 0.51 35.42 50.08

Table 2. Estimating hidden semantics. Per-class and overall accuracy of our approach.

the training data. We define car and pedestrian as foreground classes. Note that no
disparity and semantics are provided for the hidden layer. We therefore relied on the
ground-truth generated as described in the previous section.

In Table 1, we compare the results of our approach with the baselines for both
the visible and hidden layers using the manually annotated ground truth. Note that we
outperform the baselines in most cases. In particular, our approach yields a large im-
provement in the hidden regions of the image. This evidences that our two-layer model
is well-suited for the task of hallucinating depth, and thus constitutes a significant step
towards being able to build scene models despite the presence of occluding foreground
objects. Note that the fact that our model also yields more accurate depth estimates in
the visible regions than state-of-the-art depth completion methods also suggests that
it effectively leverages the visible information. Moreover, Fig. 2 provides a qualitative
comparison of our results with the ground truth and the baselines. We further created 14
images using the depth composition strategy described in the previous section, which
gives us access to ground-truth hidden depth. Note that the 14 images were chosen to
respect the scene type ratio of the data. The resulting hidden-rmse are (Ours,Baseline-
1,Baseline-2): 7.72, 9.76, 10.94.

In Table 2, we show the results of our semantics labeling estimates for the hidden
regions. Here, since no baseline is available for this task, we only report the results
of our approach. These results show that, while hallucinating small classes, such as
fence and poles, remains challenging, our model yields good accuracy on the more
common and larger classes. Note that effectively handling the small classes in outdoor
semantic labeling is known to be difficult even when leveraging visible information.
Finally, we observed that the semantic labeling accuracy in the visible layer did not
significantly change compared to our initialization. In particular, we obtained 88.51%
per pixel accuracy and 67.28% average per class accuracy. In Fig. 3, we provided
the qualitative results for semantic segmentation on KITTI dataset. To further illustrate
the effect of our approach on the visible semantics, we initialized our algorithm with
the results of FCN-32s only. The per-pixel and per-class accuracies of FCN-32s were
87.86% and 69.98%. Our method improved the per-pixel accuracy to 88.5% and left the
per-class one virtually unchanged (69.81%). This also resulted in an improved visible-
rmse of 5.01.
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Fig. 3. Qualitative results for semantic segmentation on the KITTI dataset. From top to
bottom: RGB image, ground truth results and our results, ground truth disparity for the hidden
layer, our disparity for the hidden layer, Baseline 1 and Baseline 2, ground truth semantics for the
hidden layer, and our estimated semantics for the hidden layer.

5.3 Results on Stixel

As a second experiment, we employed the Stixel dataset. This dataset contains 500 im-
ages with corresponding noisy depth (disparity) maps and semantics, partitioned into
300 training images and 200 test images. Note that the disparity provided in this dataset
was computed using a semi-global matching algorithm. Since ground-truth disparity
is only partially available for this dataset, it is therefore not possible to generate the
ground-truth disparity for the foreground mask as before. We therefore only provide a
qualitative comparison of our approach with with the baselines. There are 5 semantic
classes in the dataset. We define car and pedestrian as the foreground class. The qual-
itative results of this dataset are shown in the Supplementary Material (Fig. 4). Note
that, again, we can see that our approach produces more accurate disparity maps.

6 Conclusion

We have introduced a fully-automatic approach to jointly completing and hallucinating
depth and semantics from an incomplete depth map and an RGB image. To this end,
we have developed a two-layer model, encoding both the visible information and the
information hidden behind the foreground objects. Furthermore, we have designed an
effective strategy to optimize our two-layer model. Our experiments have evidenced
that our approach can accurately fill the large holes in the input depth map, produce a
semantic segmentation of the observed scene, and hallucinate the depth and semantics
behind the foreground objects. In the future, we plan to extend our method to accumu-
late the information observed in a video sequence of a dynamic scene.
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